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Introduction

Fartial differentisl equationa play a central role in mmny areas of physics,
engimneering, and applled m:themtics, Existence and uniqueness theorems usve bdeen
proved, and general propexties of solutions have been atudied, for largs classes
of problams for partial differential equutions. Hovever, explicit exsct solutions
& a0k prodleme uwewareinte sav for sngineering applications, can be cbtained
only for relatively fev prodlemsj and often the amslvticel form even of thkise
solutions is too complex to be useful for prwatical appliostiona. Pecauas of this,
considerablo effart has been devoted to the study of approximate solution me.bods,
Thess fall mninly into tvo categories: mmarical methods and asymptotic methods,

Because of the stimilus provided by the development of high spesd digital
computers mmericsl anlysis tas mde tremsndous strides in resent years, and for
may problams involving r-=ial differcntisl equctions, numerical methods are idmlly
suited, For 20me Mivposed, hovever, these wethods are imprectical or even useless,
Tats is particularly trus vhen ome i{s primrily concermed “ith such questions ae
the functiom) dspendence of the sclution on the paremsters and the datc 7 Lhe
probles.

Asyuphotic weiwds bave been developed for some types of problems, in
particular for certain wrodlems {nvolving & parenster. Such wsthods provide one
or wore terws of the asymtotic expansion \say for large values of the jaresser)
of the solution of the prodlem, Thay are appliosdle t0 many problems for which
umet solutions sre oot aveilable, and even for wproblews vhich tnve been sOlved
emetly (8 often happens that only the saymptotic expansion of the solution is
surficiently simple t0 be useful in prectical spplications., Purthereore it is
{ovariably true that the sethode vaiok yleld the asysgtotic expussion directly
e vary mach gimpler than the procedure which fovouves firet fioding the emet
solition, 6-2 then its asyugtotic expansion,

i report is davoted 0 the stuly Of o certain clase of asyuptotts
anthods far limsar partisl &ifferential equations., A cemtrel fostwre of such
enthods 1s the wotica of "rays” vhich are ourves cr stretgh. lines. The
rays are of fundomsutel importance Decause all of the functioss \bich mke wp the
marices teras of the ssyuptotic expaneics can be shovn to eatisfy Grdimpy 4f.lwrwat!
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equations along these curves, Thus, in o sense the method is one wi ch reduces
partial diffesenticl squations to ordinary differentinl equations, Often vhe
lotter can be solved to yield explicitly the desired asymptosic exponsions, In
some cuses, however, the ordimary differenticl equaticas ennot be solved explicitly.
This 1s o limitstion of thc metbod which {s cften overloared,

The historical dsvelomment of our subject is alreedy suggeeted by the tem
"ny" vhich 18 u couirel ides in "gecrwtrical optics.” 1In our study of the
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of an optical protlem 1s identiccl to the lesding term of th~ coymptotic expansion
(for large frequencies) of the solution of an aptropriate probles for the reduced
vave equation, 1hus tlo asyrptotic vethoi shiows that geomstricel optics is o
first approximtion to “wuve optics”. But in addition to this isportant insight,
the mathod provides furthor terms in the asymptotic exponsion, These terms cre
of course particularly important {n regicas (such es “shedow regions") vhere the
gecmetrical optics ters {s 3ei.. The presence of small disturboncea in geometricel
shadow rezions hos been czllod the phenomenon of “diffroetion”, Thus ve may say
that the asymptotic thedry ~f the reduced wvave equation yields not only the classienl
geumArical optics, but olev a2 nev  "geomstrics)l theory of Aiffvaction.” Ve stall
not attempt tO summarize the history of either the claseionl or wodern theory herve,
Novever, the refurentes to tlis report provide «n ostline of wmny of the sotridutions
vhich have constituted the modern development.

let us indicate very briefly the steps fowolved {n She asywpbtotic mstbod,
For problems vhich con be solved exuctly.emxinetion of the asymptotic expension
of the aolution shows tiat it cons’sts 9f o sum of terms, esch of vhich is on
asysghotic series involving s "phase funstion” sod an fofinite sequence of "aplitude
funoticas”. Por complex problems, we Shercfore assume thad the salution is also
o om of such sorfes, By inserting such u series 1uto “he articl differemtisl
cquetisn ve £ind firet that the phase AAnction sctisfies a Firet order portisl
differemtiol equr*ion vhich can do solved by the "method of charwctaristics.” The
aaresterittic curves ore the ruys vhich ve lmve msstionsd and the charesteristic
cpations vill be called "ruy egmtioc”. Thus the phase fMwoction satisfies en




ordipary differemtiul equation tlong the yrays. Ve alsc {ind that the amplitude
functions satisfy ordimry differsnti-l equutions clong the rays, In order to

find the rcys and the phnse nnd ampiitude functions it 13 necessary to specify
inttial conditions for cll of these ardinary differumtial equations. In some

coses the initial conditions ere n direct conscquence of the duta of the problem,

Iz cthers the dsta aye ahtained from 3 “"canoniccl prodlem.” A cancnical prodlem

1s o problem vith the same local features as the given problem. Tt is however,
sufficiemly simple to be sclved exactly., ‘the required initivl cumtiticds 9 Tos
given problem arc sbtaincd by exnmimatio, of the asymptotic expansion of the
salution of the canonical Problem. Our use of the vord "simple” in comnection with
cancuical prodblems is perbnpe mislonding. Often thi. solution of & canonic:l
problem is an ambitious research project. Once it s found hovever, (ond expanded
asysptotioslly) it ylelds the uwcessary inforwotion ta camplete the csywprotic
I2"tion of & great many prodlems vhich cannot be aclved waictly. Thus the asymgtotic
method also provides a vide opplicotion for exmet sclutions of “simple” problems,
hente an udditioml wotivation for studying them,

It 18 by now elear that the aoympiotic method iuralves severcl wproved
sapmptions. It is therefurs reascundls to ask whether {t con be proved that it
doss indeed yield the asywptotic expansice of the exmet solution af tim given
problam. Mo gensiel pwoofs of this fust nve yet been given. Neverthelsss there
is sbundant evidenve of the validity of toe mothod, The evidenoe 1s btuload
sfther by comparison of the results of the asysptotic sethod with the asysptotic
svpannion of exast solutions (Vhere such coluticns are swuiladle), or by comparison
vith omerical end experissntil setbods,

Copter A provider the sost camplets fllustrotion Of our methed, In <hat
clmpler vo have attampted to provide s unified mmmmry of the existing litercture
oo the ssyuptotie theary of the reduced vave eguation. In ctapter B ve apply
the scme wetbods to Mumvell's equations. Moet of the festures there are the some
as in ctapter A, and the vacder vhose priamry iuderest 1s in umde; stusding the
theary cin amit chapter B. Ve lmve includsd it Bocsuss ve viev the asyumptotic
sathod a8 & pructical procedure for salving problems and there is o large dumoA
for \bs eolution of problems fhwolving the slectramgnwtic field. Purtharwore the

vertar ehsautter of thi~ fleld istroduses complicationg which do not artee tn S
study of tiw roduccd vave egmtion,

Throughout the report, vectros are denotet! -y capitals.
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A, Asymptotic Methods for the Reduced Wave Equation
Al, Asympiotic Solution of .ae Reduced Wave Equation
Let us consider a resl or comlex function v(t,X) vhich sstisfies

the vave squeticn

g.?-l(- Ve © O Q)

Berc the renl wlusd function c(X) is the propagation spead at the poiat

X. Ve shell look for s product salution of (1) of the form v = g{t M(X).
If we insert this fore into (1) and sepcrete variables,we cdtain

2o 2R .l (2)

nu-mx.xom(e)muum the (cometant) valie of the left-tand
stde by ~F. Thon (2) yields

- o (s Valt), y

and on substituting (1) imo (2) ve omtain

An:‘;&’ w0, ()

aation (V) for u i called the pefuced wave SRpticn or
sourtioss the Jalsholts euption. It 1s cwstomry to imtrodwce imo 18
& const.mt -eferesce spoed e . Ta terms of ¢, ve define the fndex of

psfxegtion of 3 o c /o) ond the sropamition copmramt, O \Eve mier,
k- Yo, Then (V) becones

& o :'-'(I) us O,
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The constent @ 1is called the anqular frejuency of the soluvion beceuse
tvo linssrly-inaepandent sclutioms of {3} wre the periolic functions
e(t) - % and glt) - ?™. With them we can furm Lbe tvo linearly -
independent product solutions u(X)ei® tand u(Xel®t. Simce the
complex conjugte of every solution of (5) i3 eleo a sclutiom of (3),
1t follovs that every product solution of (1) of the rorm u(x}e'®® is

the cumpiva vOLJuEte O 3 zsiutien ul Y Dwe

v(t,X) « u(x)e 3@ v (6)

Tharefure 1+ miffices %0 study sclutions vith "negative time factor” of the
forn (6). If a real solution v is required, the real part of (6) is such
s solutiom,

e sinil tov consider the solution of (3) for large velwes of k.
Ve Degin vith thy chsarveticn tist vben n(X) 1s conatemt, (5) udmite the
plane \ave s0litions

ofx,X) = (k)i (1)

hnmwtncmlermmwm@wa-k
and the saplitudy 2 (K) i o res) or complex constant. [n feet it followe

from the fourier integral theorem thut every rolutios of (5) vith cosstemt n
18 ¢ mperposition of plase vave solutions of e fore (7). Te cponemtial
15T 1y called the pmse factor 5F the solutie and ve shall cell
all:X the pip~s. Dy asalogy vith {7) ve sinll seck solutions of (3) of the
fors

ulx) » a(t.l)t’“‘“’. (®)

Upon taserting (8) isto (3), ast comvlling the phese factor %%, ve
obtais
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K200 - o) 2 + 24kV8T ¢ 1k2A8 4 &g w o, (9)

To solve (9) for large valuce of k ue assume that z(X,k) can be expanded
in inverse powers of k, It is convenient to write the expongion in tems

of (ik) in the form

- _ - (10)
x’n(X,k)wz 3, (X)(1x)™ = L 2 (ENiE) T, 2 w0 form o cly 2yeinse
mso

Ve huve used the sign of asymptotic equality in (10) to indicate that the
serias must be an geymptotic expansion of T as k =w, This moans that for

euch n > 0
n

(Xk) =) (RIS 4 ol7), (1)

2s0

By defintcion the crder sysbol denctes @ term for vkich Mo X'o(x™)| = o,
k=n

We vill assume tha® the expansions of Ve and &g are odtained by termvine
differentiation of (10), Upon inserting (10) imto (9) ve cbtain

; (1" {[(v.)i-’_ naj 1., ¢ Ve, ¢ L) ¢ A.J_} ~o, (12)

Pren (12) it follous that the cosfficient of each pover of k
wust ba sero, Jor m = <) ve obtain

[(V.’a - gajgo s 0 ’ (13)
since 3 o forme-), <P, ... . If, 48 Ve Somame, s, # 0, (13) 2esds to
the gicogal squatiocn for s,

(@9? « a2(xX), ()




For m = 0,1,2,..., the veaishing of the coefficients implies

2Vs'vzo o, & =0

avl‘vlm + Z.‘;“ uo. &&“' » | W 1.2, see (16)

These equations are called the transport equationt, We vill see thet

%, Can be obtained by sulvirg (15) und the other @ u 0% be detarmined

successively from (16).




a2 = te and rays.
The eiconal equation {1.14) is s first order non=linear povtial
differentiol cquation for s{x). Ye could ohtain reqiired solutions of
{1.1%) by applying the general theory of first order partisl difforemtisl
nquaticns®. Howgver,thc specinl form of (1.14) ensbles us to take a sisplified

T D e AR e 1) S i G S A“.u.

(though equivalont) approsch, and avoid scme of the complications of the
Jenersl thaory.
The surfaces of constant phase, defined by s(x) = constent, we
called yavefronts. Tho curves orthogonal to them cen bo used to solve
(1.14) for o(X). Thesc curves ure called pgpy,. (In the gensral theory
they are cslled the gharucterimiis ourves.) Tue apation of a ray may
be vritten in terma of & paremcter 0 in the form

X = (2),%,2) = X{0),
The oondition of arthoyonslity 1a

an
"'5“ . llx"l 3 - L,2,3 (2)

Mare A(X) is sn arvitrery proportiunality fastor. Upon dividing (2) by

¢))

o ey

A and differentisting vith raspect to ¢ we obtair
b

(= FE U WU SO PR ¥ X) 5 ) P

J =1,3)

Bov (3) amu (1.10) yleld

14 (}g.t) .Q..J(g'), yetraan )

1s addition (2) end (1.20) give

g (f';f‘-\)9 afl, (£

“see (9], hapter 2.
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Equations (U4) are a system of thrce sccond-order ordinary differential
cquationa for the rays X(s), and (3) detormines the variation of the
purameter ¢ olong 3 ray, once X has been chosen. e call these equations
the rav eguaticns. It is to be noted that s does not cccur in them. Hence
the rays are determined solely by n(x),once initial velues for (4) are

specified. Of all the rays, o twe porcmeter family are crthogenal to the
vrwmafrrnta af a aiven Dhree functim a.

If ve choose A = n°T the ray equations takc the form

dx -
n“-d;Q;,-,-l) g: ({); 3o L33

Prom (1) we sae that fur this cacice of A, @ 18 just arc-length alang tho

tuy. If we choose ) = 1 and Cencte ¢ hy ¢ the ray equations take the
simple Jorm

2
%aﬁ;@f)s LRS!

2
dx
2
«fn
2 (%)
Pras (7) axd (9) it 1s clear that if o denotes arc-luagth

o ] “ t
4o f g (ox )¢+ var. (10)

To solve the elconal equation (1.14} :ve » ve note that (1.14)
and {2) yleld, fir the deriwative of s along & vay, the ressit
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Lo o)) w %+ & o Mw)° N

Upos integrating (11) vith respect to ¢ ve cbtain

s(x(o)] = s{X(o5)] ¢ f AX(o )]l [x(e* oot .
[
0
When A = n°%, Gdonotas arc-lensth and (12) becomes

3

NONRIIAE fﬂ(s'} an, Qan

°
Here ve bave vritten s{o) for s[X(c)] end used ¢ similar notation for b,

Simtlarly vhen X « 1, {22) becomes
or) l(to) *[ na(v')df'. (')
[+]

(13) and (18) provide .:aple formulas for the valus of o 8% axy point oo
8 vy in terma of the value et A given pulnt,

Iz the preceding cection the reys vore used to cbiain the
soliution o(X) of the eicomal aquetion (1.14). Thay can also be used %o solve
b tressgort equtions (1.13) ana (1.15), Ve firess acte that VooV, 18
mx«-stuwmmunon.umumuuuw.
wvhich 4 Just the ray directicn, Ia fact from (2.2) ve cbain

%o jEew, - d g o (00D, ()

Tous ve - .e thet the trensport equetions (1.15), (1.16) are, 1n fuet,
mmmummwmwm.m-pu

vritien as
%i? Ogohoo, (2)

;% L} k.“ [ ] A"" Ae lggnuo (l)

R R T T
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We will first obtain the soluvion 2 of the homogeneous
equation (2) and then use it to ocbtain the solution of the inhamdgenecus
equation (2) by standard methods. Actually, the solution of (2) is moat
easily cbtained by returning to the form (1.13) and noting that that
equation implice

(a2 ) = 3,278, 00 + 3 08) = O. O

Given a rey, ve now consider s reglon R of X-gpace bounded by s tube
«mmmmnmm,mmwammuw(oo)
and i(e) utmmtueomcotwumm(mm).

v(e,)

T™hus Y ie parsllel to the sides of the %ubc and normel to its ends.
Ve v apply Ususs' theorus W the resion R. By virtue of (b) wve
cbtain

o-ﬂv(sﬁwm-ﬂéwlu-ﬂ n:wlh- (5
o) v(ey)

fare B 15 ¢ unit vector orthogonal to the vave«fronts. Nowewer from
(1.18) ve see that %u:B =« n. Therefore Uy shrinking the e of rays %
the given ray wo Wblaln

|:(c)n(o)h(!) . ng(cojn(o,,)u(oo). (6)

mumemaumtmmtoluthm-lm

stor < f8f8) M
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6(0) 1s called the gapansicn ratic since it messures the expansion of s
tube of rays. It is just the Jaccbian of the mapping by rays of W(o)
on W(o,). Tram {C) and (7) we nov cbtain ibe solutiom of (2) in th. form

/2
(og)nlog)
o) = ae) ()] - @

Prcm (8) ve see that 3. (0) varies inversely as the square root of o}
m-w.»mmgwmnom.. Thus comvergsnce
of the 3y tends to incresse 3, nd divergence of thom tends to decreese
it.  fhe physicsl interpretation is perhaps more clesrly seen in (6)
oh states that the energy flux sgpde 1s comstant along en infinitesinel
tube of rays.

In arder to cbtain the solution of the inhomogeanecus equation
(3) ve intvoduce the soluticm

o - ) )

o)
&mm.whnulmunr(co)-l. Then by the method
of “varistion of paressters” ve look for a function w(¢) such that

3, (v} = w(e)z(o). (10)
If ve differentiete (10) vith rompect % 2, insert in (3), end note that
r satieies (2), ve obtain

. ba, ()

I¢ followe thet, W 40 an arvitrery sldditive constemt, v 1s given W

(12)
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and the general solution of (3) is
g

1,(0) = eyrloraute) = exfo)- 3 [ Efh) aedaa ytedeer. (13)

O

By setting @ = g, ve see that °1 ‘l(do) hence

(e Jn(s (CRLICE
-.‘0"'.“0)_m?3imﬁl -2 f F oYalo u..;("'Nv%'

a=l,2,... . (%)

If o choosa ) to ba n~t

then ¢ denotes arc-lergth along the ray and
A(9') uust be replaced by 2" (g') in (14). If we chouss A to be i then
(14) vecomes
(1)) 1/2 T 8 )n(r )
20+ 3000t - m "-1"")‘“'

nel,2,.. . (13)

4b._The case of howogancus nedia:

The solativn v({i,X) of (1.1) roprescants a dioturbance in &
physical mediue which ie charcctorised by the propagation speed e(X) or
the index of refraction n(X) = co/e(X). The medius will be cslled
homacarcous if these funciicns urc comstant. In this cese (T earlier
rooults simplify considersdly.

Firet ve oee, frum (2.8),thet the rays ere streight lines, and
from (2.17, that

8(0) = s(n,) + n(aoy). (1)
gere ¢ danotes arc-lengith along a ray. If ¢ $s moasured ¢u sll reys
fron & vave-froat 8(X) = s, then

s{o) « 8{0) * s = 8y ¢ W ¢ }]
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Rence the distance from the vave~frcot s(X) = 8y to the veve-front
ao(X) = s, is just ('1"0)/"‘ But Lhis distance is the same on every ray.
Therefore the vave«fronts form a family of paralle) surfeces.

The expressions (3.8) and (3.14) for 3o and 3 can now be
considerably simglificd by sppealing to sooe elementary facts of the
differential geometiry of surfaces: Mrlb‘.mhrpeimoum
surface 8, and let R bc the unit normal vecuwr wsnrl. Ewery
plane wPlvhSeh is parallel to N cuts 8 in o curve called &
nocmel sacticn. Lot X denote the curvature and o = XL tho redius of
curvature orthommlueuonntuwnmtrr Then X depends oo the
direction of the plane. It can be shown that there exist tvo crthogonal
directions, the Drincipa. iircctions ot Pl, for vhich X Lus saxionm
oM miniwm values. Thess values arc called the Rrincingl curvalires
ond vill be denoted by Y mﬁkz Their product
(3)

g=«

1“2'?,}3

18 called the Qaussisn SUrVASUES of 8 at ). ILet us now take 8 to be
the vave-front '('1) (see section A3) and let l‘lbc the point of inter-
m«mmnummummmmw(ol). The plam of the
mm.umwummmmv(cx) in ¢he
aormal section vhose redius of vwrvature s p,.

S s A S B o N | 1 v sl 0elE;




-13-

The ray R intersects the (parallel) wavo-front W(v) at a point, P.

Without luss of geuerslity we may measurc ¢ from the vave-frout \i(ul).

'menol~0|ndthediatnncc from P, to P iz ¢. Since the wvavesfronts are

b
parsllel the plane of the figure cuts W(o) in & normal sectiom with redius
ofcurvatnrepl+o,mdbhepluuunwghkorthccmdto&:w&
Ula) in » novmal aactian with ratius of cuwrvature o, + 0.

Furthermore it is clear uwtpl+uMp2~cmmwmmmt
of curvature or W(c) st P.

qlu the center of curvature corresponiing to ;. At that
point the ray R and !ts m:@mmmﬁ.mmmuw distance
avay, intersact. lhtumciulyql is 8 point on an envelope of the
farily of re;s. There 1¢ 8 cimilar ;mmqaemcpwmwunm
pﬁmtpnrmunofmm%,mmmmu%uﬂnnom
3 *wo=s'wated suvelon: of the ray family. This surfuce, C, 36 called
the cauttic or sauptic mufacy of the ray family, and the rays are tangent
to 1t. Home*imes the csustic degmwretes to & curve or & point, In
the latter case it is colled o focug. The fumily of rays iteelt (each
normal to ¥(o,), hence to ail the vave frouts) is celled & pormal
S00CNancs of rays.

hhtﬁxhﬂnuuhhm&oml-llr T™his
mmanonw(cl)uU(e)Mhmumolﬂllﬂ
(9100)&1 vespectively. dlmiarly we aay contider .muaanmm
M%m;ﬁmd‘woﬂéﬂm&“.mﬂhﬂaﬁﬁﬂ.
mmwmnmmmuav(:l)uu(o)mmm
ppt0, and (’2”)“2 respectively. It followe nov (esee ssction A3)
that the expansion ratio is giwen by
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(p,+0)ae (p_+c)ae.  (p,+o)(p.t0) .
da 1 < 0
&) = E&}) " Toyde 5,09, T PyPp = C) I

Rere g(c) is the Geussian curvature of v(o) at P.
Bquotion (4) crables us to vrite the equations (3.8) amd (3.18)

for the mplitude funciicn 2 and L in thc simple foru

2,99,)(p ;9 y<

35(9) = 34(e) —d—;:gmg;;r

o400, ) (5,00, 2 £ o 4 Mo vs') V2
3e{0) * 3(29) ‘(3%*??‘(5?3‘«1’ - %:f [191“-"&*"] ta, y(0')00";
[
)

n= 1,2,0-- . (6)
C3Y and By 0T the pri.cipal redil of curviture of the vave-front at ¢ = Q.

At this point it night be vell to point out the connuction
botween our subject and the mibject of gegnotricel optics, for it in
clear that peny of the terms wu have introduced such us *ray", "vave
froas®, “ocoustic®, "focus”, have been barroved fron that subject. A
closer romperiscn shovs that geomstrical optics econsists of & sut of
rules for the cunstructicn of & function to reprosent vave phenumchh .

This function turns cut to be jdenticsl to the fuaction .“'mno(x)

vhich is the leading ters of our asysptotic wxpansion. (Our remarks here
apply a8 woll to tha casu of inhamogensous medis, a(X) § const., as to
the cmdhuqmmmuc). Indeed the amyptotic theory explaing
mmcmwmmmurrmswc theorise, geo-
mtpieal aptics and vaw optics (1.¢. the vave oquaticn), have beon used
sucoessfully to dascridc the same physical plwnceend. of coursc, the
more restricted theory, gnametrical optics, ean be cxpoctad to De valld
only o* hign frequencivs (large ¥). The losding torn ot ur expension
18 often called, uppropriately, th» scagtrical optics Sarm. The higher

]l
J

e oW WY

e b

. e
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termssupply correctionsto geometrical optics. In recenl ywars tli: sub-
Ject of geametrical optics has been muccessfully generulized, principally
by J. B. Keller and his co-vorkers, to explain the phencmera of Qiffraction
and other phenomens not sccounted for by the classical theory. Ve will
have more to say later sbout this geometricel theory of QiIfrgction.

Ist us also bMelly examine ibe vummcllion setuvcen wr subjeci
ad the exact theory of the reduced vavo equation. In speeisl cases,
1. 0. for special choices of the runctiom n(X), and for problems invelvig
boundaries with special geometrizal features, prwblacs for the reduoced
vove equation can Yo solved exact)y by the metin: of separatium of
varistles. Whed such wact solutions are expanied agymptoticelly feor
lavne &, the expansions are found to agree emmctly vith the expansivus
wu are comstructing. Novover the class of prcblams which cen be solved
exactly is extremsly restricted ond even for this class of Jrodblams
the asywptotic solution cam be cbtained much move quickly and easily %y
the present msthods. OFf courss the following questicn remaias: Jor
& very wide cluss of probl ws the solution is inown %o exist and %o be
unique, Wt explicit construction of U exact solution js mt possitle.
In these eases 18 cur "anyplotin expensice” indeed the ammptotic wx-
pnsion of the emact solutica? At presoat no gemsrel proofs s be glven
0 aanrer this questich. Nevertheless comsideratis uaperissve wd
omperiech with exact solutions which can de chtained Jrovides w vith
wolfidcnce that the anpwer tA the question is afftiwstive.

}
[
1
i
i
i
H
i
|
1




AS5. Weves
Let us summerize our results for the ssymptotic solution u(X) of the re-

duced vave equation (1,5). Prom (1.0) end (1.10) ve have

ux) ~ ot ; 2 (0 (10 )

The phasc iunetion s{X} is v wuluillon & thc cicumds wyusiiva, and nosarding 42

(2.13) is given, at the point X(3) on a rey, by

[}
talo)) = stxta)) + [ alxte)er, (2

%

Here 0 denctes sre-length slong o 13y, The rays sre determined by the rey equation
(2.6). The saplitude 3 (X! is given 2t the polnt x(o) on a rey by

N

snd the otar 2 (X) are givec recursively by (3.28).

Woen the functices a(X) end 3 (X) rave been deternined, the eeriee (1) is o
asymptotic soluticn of the reduced vave equation, Such a solution will be called
o ¥gve. It frecuently harosms Lhat eore than ope ray associstod vith & veve JRases
through & given point X. mnmmtnm\-wmmuxuumw.
o of expressions of the forw (1), one for sach ray presing through X. If 80
mmmcmn\MM\nofm-nﬂnMpuuum. Sinve
mwmwz\mum‘u,m”wmmwwmwnu
also a sdlutica. Ve shal! ove that the seymptatic solution of e gives problem
mmmemx.umm,mm«-uam.g.
propriataly seltcted to satisty the dots of Lhe pretlen.
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In order to determine ¢ wvave uniquely, initial values for s must first te
prescribed. These initial values determine the fazily of reayr associated with the
wave and can be used in (2) to determine s st every point on every ray. In addition,
initial values of the functions :‘(X) st be prescrided at one point oo each rey.
Then these functions re given ot every point on every ruy Yy (3) emd (3.08), The
initial values for s and woxzoncn'mmwmuuuﬁemn-. For ex-
axple in a radiation prodles, in vhich the solution is genersted by a source, the
source vill deterxine which rays occur ard vhat the initial veluss eve on thew. In ¢
& boundary value probles the inhomogeneous boundary dats will determine the initial
velues. ?
To recapitulate: A solution consists of & eus rf vaves. A wave is uniquely
deternined by prescriding initial valies for o(X) and mitial velves for the o (X)
on esch rey. Thus the fisst stop in deteruining ¢ weve is t0 solve the initial
value prodles for s. ‘This is the subject of the mext sectiom,

AS. Do taitia) value provies for the elocoms) esvation.
In %he wsual trestment of the initial walue protles for & fivet ovder Jartial

difterentisl equation, imitisl values of the solution are prescrided on s surfess.
In our treatasnt of the efeconsl sguaiion we will also have t0 comsider lowmr di-
smeicesl iaitial ssatifolds. speciftically curves and poimts. Ve will esonsider thwe
initial wiue problens in the order of incrensing dimensiom of the imitvial mmmtfold,
1.0., poist, cu>ve, ant swrfoce. Jor some of these prodlems is the saluwtion ofX)
uaigeely deteymiasd by the value Of ¢ n the i{aitial msaifeld. However, Whe sola-

2408 vhloh ¥ fequire for orr semstrietion of & wave 1 wigualy Svtermined W the
odditional coadition that it be “outgolay” from tae initial msaifold. ¥

A selution o{X) of e clecoms] squation vill be sald %0 be outgping Mith
reepoet to & marifolld X i1f At W the ol deriwmtive of o, O < B, 19 povitive
for evary cutverd sorwal 8 to M. IT H 15 o pUist tee ewery Sirection frea N 12
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nermal; if M iz a curve, the normesl directions =t a point lie in the plane
orthogonal to the curve; and If M is a surface there ere two normal directions
at every voint, one on each side of the surfece.

The outgoing condition is consistent with the physical picture of e die-
twbance spreading out from a source (vhether that source be a primary one or, s
in bh. case Of rEIiSCRion Ly surdutiz wid Gisfsscilun by curves sand polwte. o
secondary one). Methematically, the "outgoing condition” is the asymptotie
analogue of the redistion condition, without whicn the exact aolution of : preblem
for the reduced vave equation is not uniquely determined.

Por the initisl velue protlem with & point initisl manifold P, ve require

an outgoing solution s(X; ~hich satisries the conditicn

oP) =, . (1)
Clearly the solution is obtained by finding ell the rays that emsnate from P.
Then, on each ray, s(X) is given by
o
s(X(0)] = s, +f n 'x(a') o’, (2)

°

When the source is a curve C we wmy descridbe it parsmetvically by the
aquatior . = xom) vhere 1| danctes arclength along C. let the prescrided value
of s on C be slX (M= s (P). Mffesntiating this equation vith respect to

yiells
(3)

d!o dl°
Vs w . :m- .
ax
et us introduce the angle B(N)) detvown Vs and the unit tangemt mmm! to the
curve C ot the point V). Then since the length of Pu la n
ds
2 ()

—-——1 ']
ot o ™

VR R L e A N e e AN BE LR i i+ - -
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Because the direstiou of Vs is the roy direction, a(n) is Just “he angle between a
ray leaving the curve C at 1) and the tangent to C at ). The r:ys are those
vhich emsnate from the curve C, at cvery point aleng it, meking the angle B vith
3. tangen® to C at the point. 8 is given by (b). Thus the initiel directiuns of
the reys emanating frem each point W) on C lic on & cone, the tangent to C st T\
being the axis of the cone and 8(T)) being the semi-argle of the cone. Them, vn
erery ray X{o;) lying on the concid ~manating from the point xo(\\), s is given by
s(X(3 1)) = o (0) ¢ j; ? alx(or, M) ] aet . (s)

ds
In the special cane in vhich -ﬁg « 0, () shovs that B(1) = x/Z so the cone is a

plane norwal to C.

%hen the imitis) memit-'? s a surface, §, ve may writa its equation
paramutricelly os X = xotql.(k,). It s corvenient to choues Lhe parameters 1), and
nz %0 be arclengths clong orthogonal curves on 8. lat the prescrided value of s
on 8 be oiX (N, ,0,)) = 3.(M, M), Tifferentiation of this equation vith respect to
“1 and 1\2 yields

X
Vi'mg-a'ugjvl.t. (6)
My

’fa‘
M
M.plnt?ons.r udr are orthogonsl unit vectors lying in the tangeat

piane to 8 at P, moaemm-moumv.mm- nen (6) yields,
st the point P,

2
ec-a,-%,"fz:-x.a. tn

These equaiions dotermine two directions at P on cppoeite sides of 8. These are
the possible directions of V. Thus tvo rays esanate frcm each point of 8 on
opposite sldes of Lhe surface. On each of the tvo rays X(opn, f;) eesmsting frem
Uk point Koml.lk) on 3, 8 12 given by

.t“.;nx'“:,l L 'oml"‘a) "[0. ‘(‘(" mln‘b)l do' . ("
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LR ne s

For completenecs we alco mention the chavecteristic initial value probles for

the eiconal equation: Ue assume that the initial values s o satisty the "surface

eiconal eguetion”: #
(¥e,)? = o on s . (9)
‘Then if we chcose as surface cc-ordinate curves the level curves

s, = cuas!, un? the orthagonnl sradient curves, ve may inmteoduce the surface pare-

SF Gl it DS o G MR e T Aake 08 o 3P dubie | v G

o I i2 eome ravameter that labels the grodient curves,

€.g., #re-length along one level curve. If 1‘51 snd 112 denote arc-length pmraneters :

[ e -
TN Tj LR

corresponding to T, and T, then (9) implics j
ds, @t :
e b
- - (10) i
L :
and cleerly §
3, O, dr. j
(n) ;

o . .o,
wWEm W,
It follows from (7) thet B, = 0 and &, » #/Z, i.e., the rays are tangent t3 8. In
thic cace since & s everyvhere tangent to rays (i.e., characteristics) 8 is said
to be » charscteristic surfuce. One outgoing tangent rey X(o;v,,t,) esenates from
every point xo(el.te) on 8. On this ray s ie given by

e ke e B

n(x(nrrl.-ra)) .y ¢ j; ° “m"“z"a) We! (12)

he surfece gredient curves fg @ const. arec cveryvhare tangent to rays end may be

called purface Fove. They play s central rcle in our later discussion of diffrsction
Yy smooth bodies.

AT, ceh

One vay of cheracterizing a source is by glving the values of the phase
funciion (%), as well as the saplitude coefficients i‘(l’. &t every point of the
surce manifold. Ususlly, however, the source is charecterised in some other way
mmmnxmuaw;_mummmmmannnmm-

*The guituce gawilent ¥ 1g defined in Section 17.
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shortly. Let us now suppose that these values ore given and examine the constiruc-
tion of the resulting wave.

The phese function s(X) as well as the veys are detcrmined by the procedures
of the preceding zcction. The amplitude coefficients may be obteined by mean- of

(3.14) which we rewrite in the form

H
o Taaenea]” | e re:{-'!za!"'-ﬂ& baa ()
2(0) = 2, (0} LWJ -t Lm’j —~Ey s\

B*®0.1,2,000 o
Here o denotes arclength ard r..l(x) %0,

If the source manifnld 1s a surface S,then on every outgoing rey ve mey
measurs ¢ from £ ond zn(a) is rtven ty (1) with o, replaced by O. We are assuning
thet z'(o) {s gtven.

For point end line sourcus, the source manifold is a caustic of the resulting
ray system and hence the formulas for the runct.lom:. tecome infinite at the
souree.  In these cases the source valuus of the 2, Wy be charscterized by
appropriate limiting conditions. These 2onditions will be given oaly for the case mw).

For apoint source, lel 40 to an element cof solid angle of the atarting
directions of the vays. Then fcr sufficizatly emell 3, aa(o °) ~ c:an. It wve
introduce this expression in () ond let ¢ - O ve cbtuln

(o) = 30) By g{.s}]* :

We have omitted the subseript “o". 1In (2},
3 (0) o lin 0.z (v,). (3
0 -0
¢
Je will segume that for s point rowice, = (0) 18 given. Por the case of
homOgeneous PAaiA, n fc osnstant ant dafel = c'adn. Ther (2) becomes

L)
The aslogous rormules for mei,<,... arc more complicaled amd vill not be
roquired tn Whe soguel,

11—

B as ol 2 2]
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_30)
+(o) - Mg (4)

For the source distributed on the curve C (see section A6)

it is clear fram the following figure that for sufficiently small o o2

du(a ) ~ & sin § 0 80, ()
dMein g
5
? [ ]
(]

Rere d0 is sn element of angle betveen two rays lying on the cone of rays vhich
emanate from the point T) of C. If we introduce (3) in (1) wnd et o0,

ve odtain
}
a(o) = (o)[%‘% una . (6)
Here

HORIT odice) . 1)
[ )
Again ve sseume that 2 (0) s given. TFor tho case of homogeneous medis

ve can see from the followluy figure that
aa(9) = 0d0+(p, ¢ o) = 0ad(1 + s;)nu B an. (8)

$(pyoalte « (500)- A28

mplumazm»umnummummumm—mmm
the point N on C. The point 1| itself 1s one ocsustic point. The other point ¥
my (s in the figure) Yie on the backward extension of the rey.

ey i By

Yy TR
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If we introduce (8) in (6) that eguztlon Lecomes

z(0) = [o(l + < )]'% 2(0) , 9
O

-nl is the signed distance from the curve to the other caustic along the ray in
the ray direction (i.e., the direction of increasing ¢). This distance can de
found Yy deriving the equation of the caustic: A variable point Y on the cone
of ruys emancting “rom the point XOM) satisfies the eque-ion

(¥-X )X, = Ir-xol cos B. (10)

Here the dot denotes differentiation with respect to 1), the arclength parameter
va Lo Differeaiiation of (10) with respect to 1| ylelds

(Y—Xo)';o el -IY-Xolt'\ sinp - TY;X:T . ioeos p. (11)
By inserting (10) in (11) ve obtain .

. . Y-X_)°X
(r-xo)-xo- l1-8sinp -(—é-b—! - eo'ap. (12)

(!-XO)'(;O‘ 8 tanp .U satefp . (19)
Ve now introduce the unit tansent weotor T » x° and the unit ncrmal veetor
B = oX.to the curvc C at the point X, (N). p denctes the redius of curvature of
the curve at that point. Then, frem (13) and (10), the eaustic is given by the
tvo equations

(Y-X.)*(Wpo 8 tan 8 1) = p atn? B ()

(X-Xy) ? = |- | cos 8. (2s)
Slatoatiog B frem (25) and (15) vould yicl2 s single equaticm for the cavatir
surface,

Now let B be the angle detvesn the rey and the vector N. Then if ¥ 1s the

caustic poial on the roy

e AN B N 5 e A U A L i R &V StV il 0| O A0 NRMOR LK UGB 5 4 h G D e s e i
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(Y-xo)'ll = -0,c08 8, (Y-Xo) T = = py "uB B

and (1h) ylelds .
B - L.'-!'P-—&-——_ . {17)

01 .
gfsinp +cosd

U ARS8 o o £

In (17) the direction in which arclength increases along C is immeterial since
both sin 8 and é are unchanged vhen N} is replaced by -0,
We conclude this section with s discussion of rediation frem a characteristic

P

surface S (see the last paragraph of section A6). 1In this cese the rays are
tangent to S end 8 1s & caustic of the ray system. The following figure whowvs
the "side.” "top," and "end" views of an infinitesimsl tubk of rays leaving the

surface S

do
ol CRIALN

1 e
, B P [ R

O. conat.
(Fer sufficiently tanll o the rays are approximately straight.) Here o, ('\!’
mmwonvhtdtmmhtmmMIo-cmt. ond

i
]
i
i
1
{
4
1
1
1
|

.
Py ’; .
From the figure we see thet for suffiriently small %
aa(s )~ 8 (p,9,) ein y 80, 80,.

If we introduce (18) tn (1) and let 8, O ve cbtatn
s (e) = 3 (0) Ea ein ,:g;.! 5%}]‘ .

Rere

1 (0) = 21n oo* t (o).

oo-ro 0




For the cupe O howogzieoun medla
da(s) = -'J(p2 + ) sin y d91d02 (21)

and (19) becomes N

z{g) = [o(l 4 g—;)] 3(0). (22)

]

For some purposes (c.g., whcre S 18 & plane) (19) is inconvenient.

T+ ran ha rapinced by neing (1) =nd {0}, Ve define

d§§o; - daga?) . i
3alo) ~ Mo 0,d8(0) ez

a0
¢)

z(g) = 2(0)[‘;—:{% %ﬁ%]’é .

AB8. Imsotropic point source

As a simple, but important, illustration of the foregoing theory
we conaider the prollem of an isotropic point source in a homogencous medium.
We first characterize the gou=ce by prescribing the initial values of the phase
& And the amplitude cosfticient z. The coudition of isotropy implies that the
1init 2(0) of (7.3) is the same in ail dircctlons, i.¢., on all rays. Then, if we

denote distance from the source point P by r, (7.h) yields
a(r) - M), (1)

From (6.2) we have
otr) = o(P) + ar, (2)
and from (5.1)

tk{u{P}tir}
ued - 5(0) - (3)

If the source is charactcrized by the inhowogensous equation

Fu + K0y A(X-PY; (O - const.) (4)
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B L e 2ot R

and the radistion condftion, 1t 18 well known that the imigue solution 1s the

free spuce Green's functlon,

eiknr
u =S (5)
Compuriug {3) and (S) we see that for a semrce characterized by (b) we should sel 3
s(P) = 0. ¥ (0) = 3= . (6)

The problem (4) is trivial if n is constant, for the exsct solution is

ziven by (5) and the asymptotic solutinn 1a unnecensary, However, if nlX) is a

variable index of refracvion ve may consider the non-trivial source problem

P+ En2(X)u = -B(X-P). (1)
If wve assume that s(P) uid 2(0) are determined only by local properties, then
these numbers are given by (6) and the asymptotic solution is given by (5.1), with
the phase given on each rey emanating from P by (6.2):

*(a) = alx(o)] = [ nixtat) e, (8)

and the amplitude coefficient & given Ly (7.2):

o -k [ 88 ®

The probles we have solved here illustrates a yeneral feature of

TS el R e e o L N 0. 0 3. 5050 A Bt v PR W

o ssymptotic method, The soluvion of the problem (7) wus determined by our
earlier considerations exccpt for thw values of s(P) and 8(0) on each rey
emanating from P, These values vere determined from the exact solution of the

simpler canonical problem (W), We shall frequently make use of & canonical
problem, vhich can be solved exmuily, %o obtain curialn uwidetermined rnefficients

for & more Aifficult prodlem which has the same local properties. 7
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A5, Tsotropic line source

In thisc section we examine the problewm of un igotrupic aource, uni-
formly distributed un an infinite straight line in a homogeneous medium. let r
be the cylindricel co-ordinate measuring distance froum the line, Since s o is
assumed to be constant on the source line, (6.L) implies that B = n/2, {.e.,
at every polnt on the scurce line, rays emanate at riphi. angles (o the line.

From {7..7) wec soc that

.3_._=_és1np+p_'1cosb=
5} 3.11:2;

-

0. (.

fov é - 0 and the curvature pd of the gource line is zero. Since the
wedium {5 homogeneous and the source iy wssumed isotrupic and uniformly dis-

tributed, the resulting wave must be a function of r slone, hence (7.9) becomes

z(r) = r"} 2(0) (2)
and (6.5) yields
s(r) - g, + nr. (3)

It follows from (5.1) that the wave produced by the glven source ic
w~ M) ix(eenr) ()
r
lat us now compare {4) with the two-dimensional free space Greun's
function % Hgn (xnr) vhich is the solution of (8.5) in two dimensions. By

employing the auymptotic expension of tho Hankel function we find that for knr -»w

1!
11; agl) (knr) e__x____ R ) Jxnr ()

and ve see that (4) and (5) agree exactly if ve take

’.‘
l(o) n -—;— [ ] t » - o, (6)
™ )

]
e

e s 3¢ NI ¢ A R b LR A e ek e

o et ¢ et
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We may now consider the problem of an isotropic line source in an
inhomogeneous medium, characterized by the two-dimensional anslogue of (8.8). In
this case X = x,X,, n(x) = n(xl,xz), P = p,,p, and 8 is the tvo-dimensional
delta function. The leeding term of the asymptotic solution is obtained by setting
n

8, =0 end !0(0) T S eiﬂ

2 /ZXkn(0)
Then from (A.5) we see that on every ray X - X{c;f) emanating (at right angles)

from the source line

g
s[X(030)] = f afX(e';0)]a0’, m
0

and from (7.6) ve obtain

8 (as0]] « -[ﬁaﬁ%}{lm. (8)

Mmuumt.otﬁ.nnmmmm.x’-mt. Hence
¢a(o) = aw{v)dx, - dv(o)an. (9)
The meaning of &v(v) 9» most easily seen from the following figure:
) P av(o)

By inserting (9 ) in (8) and collecting our results ve cbtain

“~:Ea{au Z nfX(e*,0)]a0' + a{} L—r‘rf,’-'.m]‘ . (20)

T A Lt ol S s Ul e 3 i S o 5 SRt i a1 oW B T R WG O AR WD I B0 i skite, e e b SRS
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A 10, Reflection from @ boundsry

Let us suppose thet & vave of the form (5.1) is incident on a bounary
surface Bj 1,¢,,the rays associated vith the vave intersect B, lLet the solution
u be required to sstisfy the impedance boundary condition

VN T I T A £ D b e

%om(x)nvo,Xml. Q1)

=

o ol

m%-m dancter the derivative of u along the cutward noewal ¥ to B, and s
18 & given functicn celled the impedance of the doundary, Frsesnasndsnd
(1) reduces o the simpler }.:udary couliticas u = O and 3 » O respectively.
Ve aseume thet a reflacted wave, also of the form (5,1) 1s groduced. o verify
this assusption ve shall show that (1) can de sstisfied by the oum of the incldest
wave u' aad an appropriste reflscted vave u' vhich we shall ccnstruct, Thus ve

write u a8
! & -, xs® -
wew e e (ﬁ) *e F(ax) (2)
s z«

W nov tasert (2) twto (1) end chtats
et ; E;i ¢ ch: 0;"1 (ﬁ)“ﬁw; [(g‘ l){
. i‘](ﬁ)"‘hq Tomd ©)

nmwum-uﬂmm.mm-uumx. A
0 vo ave .
;“)Il“,p ‘-‘ "’
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Then upon equating to sero the cosfficients of each power of k 1n (3) we cbtain

e S < A B e+

el @ e0eazan @

1 v
l:(§1*t)0l:(¥ﬁt) *;ﬂ +;l=l-o;-31;xnl. (6)

Bustion (3) provides the velue of s* cn B, (5) can be solved for s o By
and then (6) determines successively the o oo B 1IN 1s clesr that theee
values suffice t0 determine the reflected wave v', Lot ue now emmine the properties
of this wave,

Lot X = X (N, ) be the yaremstric eptton of the houndary surfase
3, The results of sestice € oculd be wesd in oomjumetion vith (V) 4o dstermine
mmmmo"’m.unummum
infepententlys Diffevemtistics of (b) with respest to T ama V), yiedds

%'-:i;-w‘-;:n-w tad o0

HAe e i SIS AN Rl B 50t - b 8+ Bt tm 4 e B S T

=
m,{ n* 110 1n the tengeat plane %0 B ot the yotmt X, (T) uheve Shet

%! cad O tave the mas Jrojestioa ca the tengent plane, Thareture the pleae
conteiniag this oommtn prejestica and the zormal X to B at X ccotains both Vp
snt W', In ~attesem staee berd of and of mtisfy the etesml sgmaion (1.10),
%' ot T have t2e cams Jenghh, A(X). Since Shetr Sengemtisl compruemte are
She sams, Wetr BOrenl cPeneuts must b of ogua) lenghh, If ADay Mot the

s sign, Vol ant N7 voula by taemttenl, sud t2is weuld viclste Sin acatitiea
et ¢ Vo onguing fron B, Thavefere the sarenl scEpIeEle a5¢ of Eppestte

oign. Thsee yesults My be sumneised in t2e fon of Mafiovticn. nie Aetes




o S TR A

by e

th-l the reflected ray directics % lies in the plane comtaining the incident
ray direction %' and the normal ¥ to B, and thet the angle & reflectics
o equals the angle of incidence o (See figure).

N

mmnuaatma,mmmmmmmxmua
%! and BT lnve the same leagth,
e initial direction of esch reflacied ray is determined by the law
o cefleotion, and the 1aitial value of s* is given by (A), W wow et
4
ﬂ-é-f.lﬂmmgilmﬂﬂ* ®<noos @ Then (3)emd
(6) yaala, for the ixitial waluss of o} ,°

l{c}* t:;!.l (®)
1 » ()
S M i P aruien
These 181tia) Valuee eundle ws 40 ccastrust Whe reflectiod wve, thes verifyirg
o assmptics thet & solutice of the form (8) misfies (2),
Yo have soim that Af the vegioe of speee wnier ethaidevstion in &
pohlen hae & Domniary 1S aste 03 & ssosaiary ouwrfaee sOWee «ud Jroduses a
refisstel mve. W lave Just ctnputed the iattial emiitions vhich dsbernins this
wve, T reflosted wave my Mo rellaried agais fyen ansther part of the bouminry
and Shis my soouwr aoy smber of timse, ALl theve clugly ssd mliiply reflssted
oves Mt b0 ineluded 1a the un of waves ferming She Aqpuptetis ssdhution of the
préblen, Sume greblans imvelve, fostend of ¢ bewninry, en Lberaes, whieh 4o &
sartase § seress whieh o{X) mny Vo disventizemes, asd e Wiileh the sulstien wiX)

]
e faclor

BAMAZL 4p (8) wey be colled o paflectia miliclral.

[ A Y I N ¢y

e S B A
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mist satiscy appropriatc contimuity conditiona, In such cases if a wave is
incident upon S that surface acts as & secondary sourcs and produces nct only
& reflected wave but also & transmitted vave on the cther side of the interface,
In sddition if the boundary or intextace comtains edges Or vertices, they will
act as secondary line and point sources, respectively, moducing viat we shall
call umtd waves, il sipgly and miliply reileuisd, transmittsd; amd
diffracted wavea must be included in the sum «f wvaves forming the asymptotic
solution, Insubscjuent scctions we shall show how to :alculate these wave-,
A 11, BReflection by s parsbalic cylinder

Bafore ceomgidering transmitted and diffracted waves, ve shall {llustrate
the results of the prece’'»g section by considering the problsm of reflecstion
of & place vave * » incidant along the axie of & parabolic cylinder, from the
outeida, J

r ~ben

->%

We will teke the 1ndex cf relyrection to be DAl apd the doundary condition 40 be
ue0, The incident rayv sre Jamllsl to the axis, end by the well-knowmn
focussing property of paratolas, the seflected yays are redial lines viish wvould
pass through ibe focus If extended buskvard, Therefors the 1eflscted vave
MllﬂmcmomMr-m-M.. 1.6, the reflacted wve
1s » griipdrjosl wave,

In gov ve), for eylindrical vaves, one priunsipal redius of curviture of
t2e vave fromt r = const, is infiatt. ond the otiwr oquals r, 1If ve take the

weve-front v(o,} of section btoder = 9, then ¢ = ¥, 40, 0g= ®




and (4.5,6) becone

T, 3
3,(r,9) = uo(ro,o)(r—°)

)\

r 1 "3 ¢ ' . L o
2, (r,0) = z.(ro,O)(—-:)! - ;15'5 £ (r )Vez‘u._l(r ,» O)r; mal,2,... .
-}

By using (1) and (2) ve f£ind by infuction that

l‘(r,o) -Z t’lo) r'(é)"’ .

Inserting (3) into (2) yields the recursive formulas for r’(e),

t’(o’ - ln[‘o‘%)a tJ-l,l-l‘ t.rl..‘l s J ‘ °. a !‘ 13 (k)

tal® = 2 2Onfr 009 - ; r g 2 (5)

1,000 = 1fr,00] [rom}‘/ 2, ©

;.[r°(0),q 1s the wlue of 3 ot some poimt ro(O) on the ray O = const,
Por o oylimrical vave s =T ¢ 6, "o"‘""')' ous (9.1) and (3) yta2d

tx(res,) =
-3
i g(nr' 3): MO (m

mmwumxnmumummmau
the paredola of foosl lsngth p ae
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On the parebola, the incident field 1s e 2% ¢"3T, €08 O oy rerore by

inserting the total fleld, incident plus reflected, into the boundary condition

= 0 owe il

-ikr  cos 0  tks(r ,0) « -
e +e s Ir (O), (ﬁ) ~ 0, (9)
£ofoord

If we equate t0 3aTv coefficients of povers of k in (9) wve find that
#{s0) = -ro(O) c0s O,
.O['O(o)’ °] s §
s_[ro(o), ﬂ -0 ),

Prom (10) and (8) ve ses that am each rey

s w '('o’o) * rr, . r-:o().o cos 0) = r-2p,

oon-h.

By uweing (11) 1n (6) we cbrata

£,,(0) « -[ro(‘ai . -)i o g.




hence from (3),

1
2, (r19) = 72(sec e 2, (26)

Now ve may determine the rJ_(o) from (4) and (5), using (12) ana (25),

By caloulating the first fev :Jn“ £l that they have the rform

1
£33(0) =002 ¥ I Blase 224, (x7)

and (17) can be proved by induction to hold generelly, In (17) the oy e constants
vhich matisfy ths recursion formulas

Gt £33) Yyl L2 (18)
]

‘" " g Sy W1 (19)

8o * - (20)

Prom (18-20) the & - 00 be determined sucressively.
Collecting our results Ve have, tor the asympteti: expansion of the
reflicied vave,

un otk(r) gmr‘ }; sttt 914, @)

The prcblem trested asymptotiocally in this ssctica caz be solved ammotly

o




-%-

by separation of variables in parsbolic co-crdimtes, When the exact solution is
expanded asysgptotically for large X it yields precisely (21), If the exmct solution
1s compared vith the first few terms of (21} (turough (kp)~2), the mmerivel
agreement is found to be good for

W22, (22)
The problem we have discussed bere, and numercus related problams are trested in

[18). The domin of validity (22) of the leading tarms of the expansicm is typical
Oof most problems vhere compariscns vith exact solutions have been mmde,

A 12, Beflaction and trensmiseion at s ivterface

In this section ve shall determine the secondary waves vhich are produrad
vhen s vave u® 1s incident oo cne side of & surface 8, across vhich the index
of refrsction, n{X) my bave & hmp dlecomtinuity. Such & surface is cslled an
interfage, Ve denote ty nl(X) -unz(x) the limiting values of n as 8 19
approached from sides 1 and 2 respectively, and we requive the salutiom u ¢o

mtisly the tvo boundary conditioms

\llntna.%inb%f. on 8, 1)

h!tmbmummsmusmgnlﬂa denotes the norwml darivetive
to 8,

Ve aseume that on the aide of 8, say side 1, from vhich the wave u'
{s inotdent, & reflected wave u¥ {s Jroduced; and on the other side & tranemitted
ey, U 10 profused, To verify tiis ansumpiion ve shall shov that (1) te
sstietiod by

waule w, we u‘, (=)




vhere u’ and ut are appropriately constructed vaves, outgoing from 8,
Thus we set |
(3)
ul ~ eu'i Z !: (1x)®, o~ .mr E r.:(ik)", ut~cmt Z ::(u)" ,

vhere :: » z: . z: @0 for m = =1y=2yees o+ Ve insert (3) into (2) ava {2)
1nto (1), and derive the following conditions,

o1(X) = aT(X) w s¥(X); X on S (4)
li*-:-u:31ms; (s)
6)

1 al o & t ¢
1 2 ER %
e ’s‘*w':a‘%"[w"m‘ ]'““-

ItXeX omx,“n’ 1s the paremetric equation of ihe imterfane, 8, thea
aifferentiation of (&) ylelds

x .
w‘-“:.v.‘.ga.. v.‘-g.‘au.x.z;xul. (1)

and theee equticns twply that %t, W', and %® iave tbn came projection oo the
tangsot plans to 8 at the point X, It fullove that thess thres vectors and the
unit sorwal vector N are coplamar)
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Trom the cicoml equution, we sote that
2

2 end, W2 eny, (W edd, (8

It follovs now frcm (7)(8),2nd the cutgoing condition, that Y™ and ' ave
drected a3 chown in the figure and that

a!'-d‘;nsunbcnluna. (9)

Ve set
é-f—d. (10)

and thue
d.nﬂ-% sin a, (1)

Rpmtioe (10) is the familiar lav of reflection, asd (11) is the }gv of _refrecticp.

Returning to (6) ve note thet

1 t
g-\ma,%---llmﬂ.% = -ng a08 B, (12)
Ve insert (12) tmto (6) and imtroduse the retio

..‘lmu. (13)

Then (3) ant (6) take the form ‘




u: -1 . z: , Xo$, (14} e

at, al, ary )
wiofedoghn bR T e

and thess equations are easily solved to yleld

(16)

at 4 aran
d-ardr ks [ 0 1ae

(10) and (17) sre valid for m = 0,1,2; ... , but in each onse the second ters
o the right side venishes for = o, *

The initial values of s* and s° on sach reflected and tremsmitted ray
md.mbr(k),Mmtutmmoumcuﬂul-ul:uﬂlz are
given by (15) and (17). Theseinitisl values emsble us %0 construct the
reflected and tranmmitted vaves, thus verifying our imitial assumpbion,

In the foregoing discussion we bave tacitly asemmed that (9) can be
solved %o cbtain the angle of refrectiom, A, For all angies of inoidence
@ < %/2, this 1s certainly trus providsd "1/n, < 1. However,for "V, >1
tmu-mmmu,mmna sina, = 1, For thie
angle of imeidence, the angle of refrection is B, = ¢/2 and the corresponding
treassitted 1ay s tangemt to0 the imterf e, Partbermore for ¢ > a, (11) hee
20 real solution 8 and cur earlier &iscussion must be modified,

Thees camplicstions, which coeur viea “)/ny > 1 are ssscoistet vith
the phencmencn of SO0 refiscticn. They vill be discussed further, fw o "pesial e
ease, in the following sestion,

-
s

y .

* o Ak -
Far m = 0, the factors {70 and a(l+z) P& be called paflcciign ond frandmiesion
Qe fistentn,
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A 13, Meflection and trewmission of & cylindrics) wave at a plane interfuce

Yot n(x,y,2) = 1, for y > 0and n(x,y,s) = u, for y<®, vhere a, en4,
nzmu.mconumo. ‘m the interiace, y = O we yrescridbe the boundary
conditicos (12,1) with & and b constant, The incident wave 1s assumed to da
Wcived Dy @ idac source, Thc das i peopwslicular o Ll plane of ths
foll'oring ﬁ&m and intersects that plane at the point (o,h),

(o.m "\b-’gc
\

ﬂ‘_ x
N L, ] x-y fanct,0)
,(5"’ N (Arano0)
- tanot, 0y
@bk

Lot » -J;Eo(y-h)! denote distance from the sourca, Then, if ve sssume that the
scurce produces the inoidence field u e % Ign(hlr). (See section A.9) the
insident vave is given w'

oo o g l:(r)(ﬂ)..} ¥ > o} ()
hate o (2)

l:(r) - ——‘L } !:(r) » y (,‘p;-l,ﬂ,..., .- &
y anlr -"-1')- ok

Bacause of the syumetry with respect to the y-axis ve need calculate all functions
oehtu'xgo.
Prom the lav of reflsciion it 1s easily seem t2et the phase o of
P ] 1]
the reflected Wve 15 6" = u,r Where r -J:"(y\)l 1s the dictamse from v
the yoint (0,-a) represestiag the “tmags" of the seuree, TMerefure the reflected t‘

.
(1) and (2) sre ohtained from the ssymptotic expunsior of the Henkel functic.. :{S,“(r)
for ¢ .o+ w,
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wave i{s given by

W o YT g l; (1)™; y>0, 3)

Binas the reflacted wave.fucmts are oiveules avlindaws  the v% maw e

- - -t e —— e e -

obtained from (11,3) - (11.6)byraphc1ngrbyr. and X by kn,o Ve 2ls0
]
neero-hmabouuu, for points on the interface, r = h sec @, Thus

] L 1
2y a) - ()™ g t @' E ®

MOR %3[(3-%)2 fiam1 .nri-l' 360 mzy  (3)
1 ()
:c_(a) ® (h sec a)’ u: (u sec @, a) - g (b wec a)"r’(a), nd1

e e e e Kk M D, on v Lo e s

-
roo(ﬂ) - l:(h sec a,a) (h sec 6)1/2. (1)
The phmse of the incident wave at the point (b tam a,0) 18 o = nh sec a,
Therefore the phase Of the trenswitted vave at a distance ¢ fram that point
(along the trenamitted rey) 16 o* = nh sec @ +n, ¢, s the “renmitted
wave is given by
“t‘v.n(ﬂlh sec & ¢ %C) ; ':(u)ﬂl. (8)
The paremstric equation for the trunmmitted ray is '

Xa(xy o(htanao0) +o(sin f, - cos B) (9) ‘

4
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and from the lav of refraction, (12,11),
-1 2.4
sinPap ™ sindj U ==S w3, (30)
b B

Since the media are homogenecus, ve may use (4,6) to determine the
functions 15, Decause the entire yroblem is independent of z, Ve my take Ore
radius of curvature, say 92, to be infinite, To determine p; we ausi fiud T
caustic of the transmitted reys, i.e, the envelope of the family of straight
ltnes (9). Using B as s pavamster, ve denote the caustic curve by X = X(8,,
Py Wil be the distance from the point (h tan a,0) to the caustic, slong the
backvard extensicn of the tranmmitted ray. Thus by setting ¢ = =p, in (9) ve
cotain

X(8) = (n tan @, 0) - p,(sin B, - cos B), )

and differentiation with respect to O ylelds

(12)
g.(‘maﬂ ﬁ,ﬂ)-pl(ﬁﬂ’.un’)‘§(m’p'“”o

u-mmﬁumumm«:. 1% 1s parellal to the may,
bence perpeniicular to the vector (cos B, sin 8), It follows that

ouff. (mp,ml)-hmeﬂmﬂg-o:i”
Rt trem (20),

coe os-u"” 008 G, ¢1Y)
henoe

b *wb 000’ G 00e? B = w1l see? alu?.eta? ), ()

v
«
~
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This value of p, 18 to be used In the folloving equation, cotained rrom (4,6):

J ' [ ] L] (m,
si(o) = (2 +-§;)" 1'/a(::(o) . 5%'- [ (1 + -:;'1-)1/2 &b (') 49’ ); mo,1,2, ...

As usal, ve take 'tl = 0,
The functions s\ and 37 are given by {16) and (A-7) once the 1zitial
values ::(o) and l: (a sec &,a) ure specified, Hovever, these values are given

vy (12,16) and (12,17), T
arn)
: \ i &!‘
s:(hmc,a)-ﬁ ::(hma)om‘.iﬁ.a{:;gl_;gl. s @

yo
¢t &i r (u)
o) « gy 1100 000 @) ‘m}‘;‘mﬁ’;“‘? ;“].......
o .

- ’

008

et AT (10)
Proa (2), (8), (1), and (27) ve easily cbeatn

L. — A
od (';},!7! . Ea (20)

(m)

|: .T;.Lﬂv’ -&(r.)'v', ¢ -m, ‘a-m u* }

1A oy (WK) emt (WA),

sz'a;r [hlimﬁil ogj“ (ae) ‘\




(20) ana (21) give s:mﬂ »¥ explicttly as functions of x and y. o cbtain

::(z,y) from (22) 1t vould be necessary to cbtain o(x,y) and a(x,y) from (9) st
(20). at
In order to facilitate the camgatation “'#'Iy.o, which vil) be
nesded shortly, it is comveniemt to stwplify (22), Ve firet note, from (9)

s..0 £9AY an.a
BB \ 207 L=

"'&a‘”‘“‘“"&fa‘e&a . ()

Prom (13) end (23) we now obtain
(2%)

O S . [.; sl ® s o] « g fraos”) ead ﬂ
o v tasert (1) snd () 10 (1), e il
- e b B [t |
- o [ [ s

Pron (9) we aote that

ye-6onb, xzedtmacesinf, (a6)

snd €1fferest.stion Vith respent % ¥y yic'ds

1--% mo.-L?-!. (€}

Resse, vaes y © 0 (10), (26) and (27) L)y

;.
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9-:/2,.-43'.!- y, a -a vlinlv taneﬂv' ,2-0,%0 a-
&t

Ve may nov use (as)m(es)eom;"-i’_o. The comg:tation 18 grestly

aimplified by noting toat cos B = O vhen y = 0, hence

\]

&0, o | 2lina 11‘/2 d cos B!

o TS | Ty

.- :7}50 @M (aoh a )V, (29)
» A

nnm‘umgq-g mi can be cbtained directly from (20) smd (21),
mn;;(nmc.a)suni(o)mumm(11)w(m)mmu
(s~7) and (16) to £ind 3] and 1] along their respective rays. Vo vill mot
carry out this oaleulaticn deve, The fumction 3] bas besn compmed 1n (18],
If u < 1 total reflection ocours for rays incidest at sngles @
Grester than the eritical angle G, = s, The trensmitted rays carvesponting to
sngles of inoidence G 1n the 1nterval O & @ <@ cover the entire lover half-
spece, and the critically trenswitted ray, ior vulch 8 « &/2, lies in the
ioterfuce ¥y = O, nrunwu..z.macna‘mwg
reflected reys are called "totally reflected reys”, ead the corresyomiing eaagle
of refrectica, B, 1s complez, Meace Bo real tremsuitted rays origimte ia the
"regica of total reflectica”, x > b tan G, of the imerfuce, If axy veve 1s
muummumm-wuunmuw-mum
tressuitted wmve, Yhose rays arigisete in the “resion of reswler reflsctica”,

0<x<htamk, Ve villxc that s wave 13 profuced balov the regics of total N
reflsction, This vave u’ 1s called the gwapsecent WAVE becsuse its amplivude
deceys repidly vith distasce from the interface, The wve o toprthor Vit the
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the incident wave u® and the reflected wave u’, satisfles the boundary cemditicns -
in the reglon of total reflection, but the additional presence of the transmitted

wavs u® below thos portion of the interface requires that a fifth wave, the

diffracted vave 12, be produced above ths region of total reflectice, Then

together with u® satisfies the boundary coxlitions, Typdcal rays associated

e o .o [ XA L BT PUDEE ¥ e
S oi. < a3 e PO

-5

e - - K'_'\Thk—‘: on Coils Prawg
r..,\ “w
—
‘ The total fiedd will t) glven by
+* 1

Uas U 0ur+ud; Y>0 (30)
2 e e, ¥y (31)

mu‘mu'mtmuthenumﬁnﬂhrmtm.

¥ have alresdy seen hov to cbtain u® and the regalarly reflscted
part of u, I the some way u® and the totally reflected part of u” stiefy
(27) and (18) (wvith ¢t replaced by ¢), bus the angle of refrastica 8 ic complex)
there’ore the deteimination of u below the imterface is different frcm Vhe
setarmization of u*, Stnce u® 14 not required for the caloulstios of 87 ,

1,“ that funotion ~an be found as befare, 1,e,,(21) remains valid 1n the region of
total reflsction, mmu'ummwm{. Rovever,ve will
o 005 dstertine U bere, We only remmrk timt it dsvays exponentislly with

dletance from the interface, A




The vave o is completely determined by nt and the boundary conditions,
To caleulate ul ve ot

4 = t ®
ul o158 ; 20", o o™ g ™, ()
and vrite ths boundary conditions (12,1) in the form
4 t
“d.‘“t’ %-b%’ M">hm“°| (33)

By inserting (32) 1n (33), in the usual wy, ve cbtain
(3v)
l‘(x.O) - ct(x,o) emboseca ¢ na(x\-\l tana), x>htana)

s:(x,o) - u:(x.o) »X>htancy (%)

53-:,1‘;:-1»%- w0, x>buna, ()
t

n(w)nunwmmmtg--v-"-(o.x)-omn-o.x>nma°.
This follovs mmediately from the direction of the eritically transmittod ey,
%o caloulate ul we mist first solve the initial value problem for
o%(x,7) 18 7 > O using the instial valuse (34) cn the surfece ynO, Provesding
as in section 6, we sastily find that all of the diffrected rays are parellal

umenmmmmmmmmummcoum
sorwal, Ve also find that

¢ 4)
o! o n (uey) ow a, + ay[e-(aey) tan @)y ¥ 2 0 x 2(hyhen a,




-L8.

Since the wave rxwtnofu‘mxnmu, o is called a genersl plane wave, The
adjective "genersl” is required becsuse the azplitude is not constant, To
determine the saplitude cosfficlents 7 we note first from (23) that 1 (x,0) = ©
becsuse the factor cos P vanishes when B = x/2, It then follows fram (35} and (4.6) thet
s:(x,O) = 0, hence
3,(xs¥) = O, {38)
Prom (1,6) ve see timt 35 1s constant on each diffrected Tay, becsuse the redts
of curvature p, and p, are both infinite for general plane vaves, Hence fram (35)

a t (3)
:g(x.v) - sl(:-y tan co,o) . nl(a-y tan @, 0, y>0, x g(hq) taa @,

uuowunnotequeedline-motm(js)tom;:. Hovever,if ve set

a
20 tn (36) end mm}.w‘.(o,x) o 5, cos G, ve cbtatn
&% (x,0)

l:(x.O) -;1—!—“—5 + ’ (M)

and (39) and (30) ytala

at ey’ 0L
e ety = " 1 IY )

Piaally, ve tosert (89) 12 (A1), The resuls is

(
t:(!w) . % {‘xE""’”“" aol}"/ 2 ¥20, x Xey) ::’. a, -

a
The torm o' (1)"hd 10 the 2anting ‘erw of W, e 10 of ater 12

-mmmmwumammum—uuummn{.m




¥e have not determined, 25 becomes infinite on the diffracted ray which coinoides

with the critically reflected ray,

x = (beyltana, (43)

Therefore the dresent asyaptotic expansion fails oo that ray,

We note that the diffracted wave is cagpletely determined by its imitial
values, all of which are given by (35), Hence all the quastities in (36) sw
alresdy determined and therefore that squation must te an idsntily,




A 14 Diffrection by Edges and Vertices

A surface or curve is regular at a point if it can dbe represented
by functions which have derivatives of all orders in a neighdorhood of
the point, An edge is a curve, on a boundary or interface, vhich forms
& locus of pdints vhare the surface is not regular. A vertex ic en
1sclated point, on & boundary or interfuce, vhere the surface is not
resular, or an isolated point on an edge vhers the edge is not regular,
BDamples of edges and vertices aret the edges and vertices of o
polyhedral interface or boundary, the vertex of a ccmicel interface or
boundary, the edges of sn spartwre 1n & thin scveen. (In the last case
the screen is & boundary surfuce, but both eides of the screen deing
connected by the aparture , form tis dommin of the problem, If the
sperture odgs 1s not regular it comteins vertex poimts, )

¥e bave already mentiooed iiffrocted waveq and diffractad mye.

Ve vill use these terms to include all waves and reys not predicted by
the classicel theory of geamstrical optics, uhem any wave, u‘ is
snnident vyon 88 edge or vertex, N, we assume that N acts as & secondary

sourCe mnifold produoing 8 diffrected vave

a4 el & ¢, .a
wwe ;:-(ﬂ). ()

By amlogy vith sur results fur secondary waves profuced by reflection
and transsicsion, ve aseume that

Qi) eol(X), Xomk (2)




where s' 1s the phase of u'. The point or curve, M,is & csustic of

the diffracted vave; hence,as ve bhave seen,the functions :: are infinite

thers, However, the 1imit !°, int»iced in section A7,1s finite, We

assume that »3 1s proportloral to the amplitude ' of the incident

srave L X, e,

#0x) « (2) s*(x); T om N (3)

The proportiomlity rc..r (4) will be callad & diffrection coefficient.

It 1s analogous to the reflacticn cos o290t vien

appears 1n (10.8),0or the transmission cosfficiemt ¢ -.n%.-, » vidch appears

in (12,17) for n =« O, In gevere), diffrection coefficients, unlike

refleclion and tranmission cosfficients, camnot be obtaimed directly
from the preascrided boundary conditions, Instesd tbey are obtained eithar
from the solution of canonical probless or by doundary layer methods(3) mme
Jatter mathods aleo yield the values of the tg for w > O, For ecme Jurposes,
1L xight suffice to determine (d) experimentally, but this bas aot yet
been attempted, lu yeteireld, the d1ffractiom coefficient Aspanda cm the
looa) gecn.cric proparties of M, thu Jocel valuss of the indax of
refrection, the dirsctiona of both incident and &iffrected iays, sad the

wvave mubder, kj and it wenishes in the Mmit k <=,
mpu.‘(x)mmmamum-mmmu
solving the initisl value problem for the elcomil egmtion, with isitisl

4

e
B R Oy Apv T — A s




values given by (2), BSince this has been discusssd in detall in Sectiom
A6 ve need only ment.on the consequences of the special form (2) of the
initial veluss vhen M is a2 edge, Let us first assume that the index of
refrection is comtimuous in s neighborhood of the edge, as is the case
vhen the edge lies on & boundary surfuce, In this osse it follows

Snom (£ hY ana (2) shae

(»)
cos 8(N) -m ﬂf- -m %l ;x-ﬂ-euﬂm).

Bere A(N)) is the semi-angls of the cone of diffrected reys ammting
msummxom)uendpmam)uwmmmmm
ray asd the edge at that poant. Since both angles lie between serc and

% 1% follovs from (V) that they are equal, Thus ve have cbtained the gpecial
1av of edge diffrecticn: The angle of diffrecticn 1s equal to the sngle

of inzidenve, Incident and Aiffracted rays in the neighdarhood of a
typionl point on an edge are 1llustreted in the folloving figure,

; “f
I L odge 1ies 0n 6n interfuce there my be two Or more wedge-siaped
regioms 1a the neighboxhood of tue edge Vith values of u(X) comioucus ia
esoh vedge Wt dlecomtimucus aoross surfaces redisting fram the edge and
scopareting the wedges, In this case (6.+) ant (8) ytedd the mapgye) lo¥

of shem A1C0rectiont
o’ 00 o o a! con &, (3)

Bare o ant o® are the angle of diffrection ead the sagle of insidense,




and o and n! are the values of the index of refraction in the regions
emtlining’gih:mctu and incident rey, at the point of diffraction,
Yor vertices, which are secondary point scurces, (2) has no special
Diffrected rays emanate from the vertex in all outward

Aimastdons in tha Aowmin of tha mrahlem

Once the diffracted rays wnd Lbo vaiues of ‘z: on M are duterminet,

the $3(X) and hence the diffrected vave u' follov tumediately from the
formilas of section A7,
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Al5.  Diffraction by edges: exsmples.®

To illustrate tne toregoind theory we simli cunrides scme poctlemc
vith edges on the boundary of a medium with index of refraction n g 1.
We begin with the ~ase in which the edge is a straight line and the incident
rays all lie in planes normal to the edge. Then the diffracted rays are
8180 normal to the edge and emanate frem it in all directions. Thus it
suffices to consider all the rays in one plane normal to Lhw wdge. If 1
denctes distance frau the edge, then the phase ld of the diffractad veve 1s
equal to s' 4 r, vhere s' is the phase of the incident vave at the edge.
The «dge lics on an incident vave front,hence s' is constant on the edge.

8ince the Aiffracted vave is cylindricel, sd(r) is given by

Bir) « B0 V2 o (ant 12, )

Kere(d) denctes & diffraction coafficieat and s s evaluated at the edge.
T™hus the leading term of the diffracted vave ia given by

i
WV (‘).1‘,-1/2 () (d)u: 2t (2)

1a (2), g * o585 enotes the“gacmatrical optice terw 1.a., the lesding
tara, of the incident vave, evalusted at the edge.

Iat us cempare our result (2} with Scamerfeld's amact umm'w
for 4iffrastion of o piane vave by a Melf-plane. Thet result consists of the
inctdout and reflectsd veves of gecmstriosl optics plus ¢ third, or "diffrscted”
wra. bhea e third ters s anagptotically cxpanded for Yevgs values of v
1t agrees perfectly vith (i), providse thnt

“ioet cf the meterial in this section is sdapted froam [16].

.y
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1
(8) = = ——Egrr—— [pec }(-a)2 cuc L(onal]. (3)
2(2nk)"' “sin B
Here p is the angle of incidence (or angle of diffraction) which is n/2 in
the case we are considrslng. The ongles between the incident and daiffracted
rays and the normal to the hall-plane are a and 0 respectively. Thoy are

“i

1liustrated in the following figure. (il weige 16 & n&il-pianc wnes ;o S

The upper sign in (3) applies vhen the boundary condition on the half-plane

1s u = 0, vhils the lower sign epplies if 1* in a = 0.
The agreement betveen (2) and the exact solution of the canonical

B N

problam (i.e.,the Sommnrleld problem) 1s a confirmaticn of our theory and
also determines the edge diffrecticn coefficiert (d). Similar agreement occurs ;
for oblique incidence ©n g half-plane whon (2) 1s replaced dy the appropriate
expression and the dencminator sin B is included in (3). In this cese 6 and
o are defined as sbove wfter [lret projecting the reys inte the plane normel
to the edze. In case the half-plane 1s replaced Ly 3 vedge of angls

Y= (=)« L))
comparison of (2), and its modified foro for § § 4/2, vith Scmerfeld's
exact solution for & vedge,yields agreement vhen

() .'_iilmvi__ [(m A_mb)":(ml. ,,.m.)'j, (%)

i q q 1

q(2xx) " “sin 8

Yor q * 2, the vedg® becomes & half-plane and (5) reduces to (3).
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We shall now apply !2) and (3) to determine the field Aiffracted
through an infinitely long. slit of width 2a in a thin screen. For simplicity
we shall assume that the incident field is a plane wave propagating in s
direction normal to the edges of the slit. Then we can confine our attention
to a plane normal to the edges. In this plane let the screen lie on the y
axis of s rectangular co-ordinate system with the edges of the slit at x = 0
and y = + a. let the incident field be the plane wave

ul - gik(x cos a -y sina) (6)
Tvo singly-diffracted rays, one from each edge, pass through any point F.
Thus the leading term of the singly-difirscted field at P, u‘:(?) in tae

mm of tvo terms,

1h(r1-u sin a.)*if

4
4 (P) ~- ’—-m— [sec %(Ol‘c.) ¥ coc %(91-0)]

1k(r %e otn o)1
-t a(ama)w (ec 3(0,=0) & coc $0,0a)). m

In (7), », and r, dencte the distances from P to the upper and lover odges,

ummuoluuoamumawmrm.umwmm.
|

The reswit (7) can be iwproved by adding to it the lesding term of
the doubly-d1ffrected field u3(P) vhich conststs of the eus Of tvo terms
carresponding to the two duubly-Aiffrected rays paesing through P, Maod
of thees rays begine at cnr edgs of the slit, i diffrected fram the other
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edge, and then passes through P, To find the corresjawuing vaves it
is uccessary to treat the tvwo singly-diffracted vaves emmting from
tha tvo edges as nev incident vaves on the opposite edges of ths slit, and
i Ly mnply (0Y 2ma 3) wieh v - /2. The cormutation 1s strelsht-
forward vhen the boundary comditivn is u = Ot
Prom (7) ve ane that at edge (3) the leading term of the singly-
diffracted vave emmting from edge (§) ts given by

1ka (2 str)e1 w/b

X
uidy - .8 T (see 3G%)+ coe 3G Ta)) - (8)

Bare we bave used tha upper sign in rach tem of (7) corresponding to the
boundary condition, u = 0, and have chosen the appropwriate valuee of r’
ad 0, (8) 10 sasily siwplified to yield

(f2-(-2)? otn o) /s (9)

u()) ~ e a(m’vr see ia‘(-lp d].

Pram (2), the leading term of the doubly-diffrected fisld et P 1o given
1%
_& N
ug(n*' Z (a) n(J)rJ“ My, (10)
J

/v . e
(‘) s e :mlz [~ *‘5,1}0 \:&%(o.‘ 0;’] e ma o0 g‘o,-i ).

R
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By inserting (11) amd (9) in (10) we obtain
(12)

. . tra[2-(-1)%stn a) ke, . .
(P) O 15 (0,-3) sec 3[3H-1)%).
U z s J)xfr sec5(0,3) sec 3i3

-%
¥e note tiwi WO(P) is of order X “and d(P) iz of arder k'l.
Y Yo

Clearly u‘;(r) vill be of orter X"V 2 Bere u‘;(p) is the lesding ters
of the riald corresponding to the j-tuply diffracted reys., It too
consists Of & sum of tvwo waves, 3ince n;n otadul’ya 1t e of
the sams arder as the ..:ond torm in each of the singly-diffrected waves,
Ve dave not computed these terma becsuse 80 far we are wAbls o compute th»
amplitude coefficients. If we dencte hy u‘ the gecmetrical optics
f1eld (1,0, ,the incident and reflected fields) ve may vrite the solution
of the prodlam of diffroction by an infinite slit, with doundary comdition
U e0in the form
1

" m;‘q: Ou: s ofx ©), (1)

Although the laading teras of the remviniag miltily.diffrested wavee

are a0 larger tian terme amitted in {13) it 1s imtesesting t0 mote tiat
thay sre essily computed, Ia Duct the resulting series is « geomtric
serico, onne 1s ensily mmmd (Gne {2¢}),

¥e lave R computad the Amhly A1 ffracted wave for the slit problam
mummca-mung.o. emummuu(xh
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Iz this case (d) vanishes vher & « x/2, This is to be axpected, for if
@ plane vave travels towad a lmlf-plane in a direction parallel to
the plane, the incldent plane vave itself saticfies the boundary condition
condition g‘; « C and nu diffracted vave 13 produced, If an arbitrery
wave u' 1o incldent 1n the came direction,ve assume thet the diffrected
vave is praportioml to %‘;t + the normal derivative of the incident wave
at the edge, The proportionslity factor s & nev diffraction coefficies:
vhich can be obtiined by zolving an sppropriste Canonical rcdlem. Thi:
nev coefficiert and its applicetion nre givea in [)f).

Thus far ve have considered only problams vith straight edges. For
s curved diffracting odge, lst r dcnote distance slong & diffrected ruy
from the edge, Then the Jasding term of the diffrected vave s gives by

4
Ga ol l: . {14)
Sare
l‘ - Cxﬂ‘, (1’)
.ﬂ. m (109).
4Y;) .58 L “t 1 r '9
v {r) =73 (0) [r(l*,’L )] % (dho[r(h;lij . (18)
Ia (8) ant (16), " and ¢} dencte the phase and emplitule of the izeidemt
Wve st the poizt of diffrection.n, 1. gives by (7.17), If tia diffrecting
odge 1o the eige of & thin scresn and the Loundery cocdition on the sereem
uwc% e 0, then (4) o gives 37 (1), If, in & weigtdastod of

the poiok of diffrection, the boundary ie locally wedge-ebape:, iben (4)
1s paven by (5),

TS
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To 1llustrate diffraction by curved edges, we concider the problea

of a plane wvave, u:l = eikx, normally incident upon & plane screen,

x « 0, containing a circulsr aperture of redius a, The geometry can
e be visualized vith the aid of ihe second figure of this section, Then ‘

a = 0, and tvo singly-diffrected rays puss through every point P,

They come from the nearest and farthest points on the edge, The angle

of incidence P is everyvhere n/2 and the redius of curvature p of the

edge is 8, For both diffracted rays the angle 5 betveen the ray and

the normal to the edge {vhich liss in the plune of the Aperture )

smtisties 5 = 0~ x/2, ience (7.17) becoues o, = -s/sin 8 Then (3),

(7.9) and (14.3) yleld the "singly dirfracted field”,
Q7)
uu-d-o- infu

2 2
ug(P) ~ - § :-(;;;)-ﬂ? [sec % ) } coo% o] [ra(la'lr" sin )]

Here ve bave added the contridution corresponding to the two singly-
diffrected reys passing through P, On the x-axis, rjotnOJ = a, hance

the last factor in (17) is infinite, This occurs Lecause the axis 1o

s caustic of the diffrected vaves, Bince the emmot solution of the
problem is everyvhere finite, & better saysptotic sapmusion lé reguired
in the nerghborbood of the axis, Suc) expsnsioon are dlscussed in [90],
If the aparture , instead of being cirelar, is foreed dy & smooth convex
curve, (17) is essentially unchanged, Again two singly-diffrected reys

pusc through each point P, esameting from the nearast and farihest points

v
«




LW

on the edge of the aperture, The singly.diffracted field vwill be
given by (17) if ve interpret the angles and distances in the obvious

way, In each .erm, & must be replaced by a,, the radius of curvature

J,
of the edge at the point of diffrection,
If & plape wave 13 pormally incident upon s plane screen containing

an apwrture , the edge of vhich is an arbitrary regular curve, the

e YT R TR, " FLFY TV I ey T

diffrected ruys emanating from each point of the edge lie in a plane
perpeddicular to the sdge, The envelope of these planes 1¢ & cylinder
vith generstors normsl to the pline of the screen, This cylinder is,

of course, & caustic surfuce of the singly-diffracted vave. (The other

caustic is the edge ituelf.)., The cross-section of the cylinder formed
by its intersection vith the plane of the screep is & curve, This curve
13 the envelops of the narmals to the edge, {,e,,the gvclute of the edge.
Thus on every plane parallel to the screen the caustic interaeuts Lbe
plane ia the evdlute curve, and ons would expect to find corresponiing
bright lines in tho diffraction patterns rformed on such planes, These
bright lines nave been observed and constitute an interesting experizsntal
confirmation of our theory, When the evdute lies vithin the aperture
curve,the lines are maked by the prescnce of the incidont vave passing
through the spartures . In such cascs they are m'ac eeaily cdoarved vher
tic gportere fL xocloced Dy Yhe anemlimentary arveen, o, 7, vhen the
circular sparture is replacedty a ciroular disk.




Al16, Expansions containing exponential decey factors and fractionkl powers of k.
The asymptotic solutions of problems for the reduced wave equation

slich we have considered so far have been besed on an expansion of the
form (5.1), However,more genersl types of expansions bave been discovered

by @EEPLOLACELLY SXPADGILE CABSL BULUTIONS OF uac roduscd wmves cquwiiun,

P4y +xu =0, ()

for a bomogenecus mediua, In [7], Priedlander and Keller bave mde &
systematic study of asymptotic solutions of (1) of the form

- (x)
uww(ﬁl(X)-kcp(X))g f:t.— . (2)

MGM\WMWM)‘*J?)‘. Although forsal solutions
of the type (2) exist for all walues d;aaytumaa.omu.i
bave occourred in actual problems. 8ince the case @ « 0 reduces to the
expansion (5.1),ve may restrict our attention here to the case @ = %
Tous ve consider esymptotic salutions of the reducod vave equation (1.9)
of the forw (1.8) vhere

g w ._kVJ,(x)" (1)

8ince ve have showvr that 8 satiafies (1,9) ve my insert (3) in (1.9) to

nAveatn

2% nYw-2xY3 VP B + k{20 Noww]

o X203 (%) V3 (2. N ruip) ot w 0,




From the form of (4) it 1s clear that ve moy expert that v will

bave an expansion in reciprocal powers of kl/ 3. Thus ve set

S T P
w
= “

vhere L Ofur we=1y22,,4y + If ve inscrt (s) tn ('J) and collect 14+
povers of K3 ve cbtain the equations

(v!)e . ﬂeo (6)
Vae% « O, 1)

Ny Ve o e e, (8)

()

2
L "-xm’ - 1[_&.‘2-9001._2&]04 &. 5"

Ve note that (6) s the familiar oicooal equation, It follows tlat
the Ealn features of our earlier axpausion, {,e.,the reys and wave-froats,
are preserved in the nev expansion, (7) mrely asserts that the surfwces
P = const ure crthogomal to tha WAve-fronts o = cOBSt., 1.8, ,

P = coust, on each rey, (20)

Jor me 0, r‘-o-u(a)uxmmltommtmmuu.
Por arvitrary m (8) can be written in the form




dz
on _ci%_ + zmbe =r. (1)

Bere 0 donotcs arclength along & ray, By comparieon with (3.1h) we

easily cbtain the soiution ¢ the ordimry differentinl equation (11),
(12)
n'(" “'do‘ 32 N ; ¢(c' Ju(or) 32 r (c'
tul) = 2%) |oter -m-] ‘E [m ol
[¢]

Yor w homogensous medium, n = const., and (12) deccomes (See section Ak)
(13)

' /2
Y (C) .3 (0 ) {;“_‘ﬁ;:ai_,ﬂ)r/ (:1;9 :(92” )] r. (o' Jae*,

Qur ney expanetion, vhich takes the forw

- n
u~ o (ul(!)—kvsy(x)) ; l‘(!)k 3 » (k)

wil) also be called & "wave”, It will de required shortly in our discussion
of Jiffrection by smooth dodies,

e ele tion and xurface

In pregeretion fr onr stully of diffrection dy weooth hodies we
conaider nov the faitial value problem for the sicomal ewmtion on &




surface, We are concernsd vith o function s derined only on s surfuce 3,
and with initial values prescribed uwi a cuxve vhich 1tes on that surtece,
let X m x(vl, 1'2) be a parametric equation for the iegular surface, S,
Following the customary notation of the differential geametry of surfuces,
ve introduce the surface tangeri vectors

X a
WeE o Rt E

and the nctric coefficients

by " FyKe Bl e 1,2, (2)

Ve also imtroduse the inverse (g')) of the mtrix (g, (). Then, of

couree

i

In (3) and subsequent equations ve esploy the summtion so~vention for
repsated indices over the values 1,2, a“ is the Kroenschker sywbol.

For any function t(vl.vz) of the surface paremsters, lat f, -g-; .
The surfuce gradient of £ is defined by

LTI R E )

Iy see that (4) agrees with the usual definitions of tho gredisst we
oot d!-lvdv' and obeerve timt

—agen

»amm— . » -y

. . e — o a— — T -




(s)

~ s
v:'dx'sk‘rixk°xvd'v . f’gugkvd-rv = fiblvd'v - fvd'rv = 4f,

Cd
. ow aw v .s O \2 s Mnia & wsm £ mbdwnds,,
= HELT IR St S+ 4
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refraction n('l, ). n[&(tl.vz)]. the gurface ejconsl wquatica con be
vritten in the equivalant forms,

(¢)
(sl)a - naj “'1,‘2,'1,’2) . '13('1,’2)'1'3'"2('1,'2) -0,

In order t0 solve the first order pariisl differential equation
(6), ve introduce the ctmracteristic curves [r,(s), v,(0]] vhich are
deternined by the salutions of %he cheresteristic equations (Mmiltcn's
oquations)

5‘ - g%; - M"’IJ, (1)

é . .i g‘ .- % [(l”)‘ n.la-(na)‘]. ™

fore the 40t denctes differentiatici vith recpest to the mreaster, 0,

(6)0('”0 om (R) 1aply that
1))

2 .
e 0307 e gyrny = gy 6t by, e 2 e ',

.J. .,

aa
o \n",




Honce ve wmy identify the parameter O with urclengih elwuy thue surface
cvrves X = X(0) = val(a), v,(0)] by setting

A= 3 R {10)

These curves vill be celled surfuce reys, Ve note timt the equation

x.xtvi-k“-.‘xt-;];ﬁ (n)
implies that the surfuce rays are everyvhare ortbogrml to the surfuge
save-fronte "'1.'2) » const, Fram (1), (6) and (20)

;- '1;1 -M“ .1'3 th 0,

s[x(e)] « sfX(e,)] f afX(e*)Jae, ()

{13) provides Lue solution of the curface eicuml epatinn (G), ence
tndtial veluss are specifiod ,
Ve assume that the fnitial values are givea on & curve on the

surface, ('1,'8’ - [v‘(n). '2(“’]' vhere T 10 an arclength parvaster,
Tinis the fnitis) data take the form

o[X0] = «°M). (v

Rsre s°(m 1. 0 glven rumction. Diilerention of {14) yicll:s

LAY I




coob-% %’ﬂg . (18)

Hapa R 10 the anmdle hetusen 8 sunfane wav and the inttial enwem, Ir

(]
ve wesuse Llml <1 < % %ﬁ— <1 then (1C) tzplies thet ot every point

on the initial curve, one rurface ray is outgoring frum that curve on
each side of it, These surfuce Tays, together vith (13) provide the
outgoing soluticn of the initial velue problsm for the surface eiconsl
equation,

Ve recall that the roys Associated. with the eicomsl equation
(1,14) became streight linos in the case n = const, These straight lines
are, of course, geotesics, oar shortest paihs betveen tvo points in spece,
Ve will now prove that for the case n = const, the surface rays defined
by {7) and (8) are gecdesice of the surfece ¢, The proof vill occcupy
tiw rempinder of this section,

If n » const, (7) and (B) take the tors

;3 - 3 C‘J.J . ‘: LI k (}V)J “./ Qa1)

Ve o8l replace thic system of four first-order ordlmry A fteremtial
ogutions by & mystem of tvo second.otder eyualions, Ve firet mote that

e d e el e oo Ay Ht e, o, By, ()




. 1 ik Jv
Ti’J = n2 (4 sks

Next ve introduce the Christoffel symbol (°rl} defined by

!J"i! = % !m‘(’.’o‘__.‘) + (a, ) - (“'.;)... 18 (20)

-y

and (19) and (20) yteld

(2)
((ap) + (‘u)g - (5,)1) ) a, .

Jv by

% ) At v - -z g g

This equation can be simplified by usine an identity cbtained by differentisting
(3),

"), G, " -cn(cu)v.

The result is

A K\ J‘ (6™ e (6™, + & (), - 6T Fey (@) 00,

.- :g (6™, + 6™, - S, Ve, (@)

Pron (18) and (23) ve easily obtain the secon:order systom of differential
eguations

v, o e 3ty e 0, (2v)

b .a. ' N N m, oy Mm Mev York Undversity lecture
“. (m’)b g "50 muﬂ 'l~'
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A 18, Diffraction by smooth objects

In this section we shull deérive a g2neial formula for the diffracted wave
vhich is produced when a vave u1 is incident on a smooth surface 8 {n sucr a
wvay that some of the incident reys are tangent to § along & curve C, In this case
there 1s & shadow repion which is not penetreted by any of the ordinary rays of
geotretrical optica. The shadcw region is separated from the ragion reached by
incident and reflected ruys by a surface 28lled the shadow boundg. The tangent
rays, beyond their points of tangency, lie on the shadov boundsry. For simmiuicity,
ve shall assuwno that § 1s & boundary rethcr thar an interface. Thus ve ghall
svoid the edditional complications of trensmitted veves. As in all of our con-
siderstions, the folloving construction will involve certain apparently eribtrery
prescriptions. These prescriptions vere llscovered by uxsmining the asymptotic
expansion of exact solutions of boupdary value provlems for the reduced wave
equation. They vill be further srified by the boundary lsyer theory. However,
geoeral proofs of the validity of the formula have not yet been giver.

In order %o derive the forwmila for the 4iffrected wvave ua ve firet come

atruct a gurface vave (or creeping veve) u® vnicn te defined only on the surface
8. Toe curve C acts as the (secondary) source of the surface vave, vhich 18 e..-
cited by the inctdent wave ul. u° e deilned only wi the “Cark® side of €, i.e.,
on the porticte of ¥ adjacent to the shaduv region. On this portior rf §, the
phase o° of the surfece vave sstisries the surface eiconal equatiom (17.6) wvith
iaitial conditions given by

s -~ on €, ()

®Much of the material in this section 1s adapted frow [36).




It follws easily fram (1) that at each point Czl on C the rurface ray emanating
from that point is tangent to the incident ray (which is tengeat to S at Q’l)'
If P is any other point on the surface ray emanating from Q), ve see fror (17.12)

that P

(p)) = ¢'(q) ~‘/ da. (2)

1
Foy
Here the variable of integration ¢ is arclength along the surluce rey.

Before finding the amniitude of the surface wave ve vil) begin the con-
struction of tLe diffracted vave. The "dark" surface of S acts ss the (secrndary)
source exciting ud. The phasc nd of the diffracted vave gativfies the eicomal
sgquation (1.14) with initial datn given by

daat on 8. (3
Ve see from sectiun § that o‘ 1s the solutiom of ¢ "sharucteristic initial velue
problem” for the eiconsl equation, and that at every point Pl on 8 the diffrected
mmcmmrl 1s tongent not only to B but #ls0 to the surt: Je rey mMessing
through ’1‘ Portions of the incident, surfoce, and Aiffracted rays ore sketched

in the following figure.

The rays may b2 descrided an follows: The incident ray vhich 1s tangent R0 8 at
3 sR1tc ia%0 tyo brenchen. e hranch (20t srown in the figure) coutinmues slong

the shadow Wounlary} the other hranch ic the surface ray. Atmuwtnt?x(m-

1y coe point 1a shown) on 1ts path the surfave ruy splits into two bremchea, O
breoch(mot shown) coatimurs sloag the surface; ths ~ther branch s the Atffrected
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ray emenating from Py. FProm (6.12) the phase of the diffracted vave is given by
P . PP r?®
s1(P) = &°(p,) +f no = 5'(Q;) + | 1ndor ) e, (W)
1" Jp Jp
1 4 1
c ik ¢
The lcading term of the surface wave is given by u'~ e L In order %0
construct the amplituda ::, ve consider the vidth dw{o) of en infiritecinal atrip
of my.face rava at the voint o on a riven surfuce ray. Tho ‘tnergy flux’through
such ¢ gtrip ic prepestionsd to n(v)[zg(c) ]Zdv(c). At tha point odda we nanwie
that Lhe fluv t» eilor Aue to energy lost to the diffracted rays vhich emmnate

froe the surface reys in the inverval 43, and that the energy lozn ts proportiunes

te n(z;)2 and to the ares olemant ywdo. 1hus
[3Y] \ [ 2
d(n(:o) v’ - - n(to) awdo. (s)

The decay exponent afc) Aeponds on local propurties of the surfsce, the medius, end

the field, Integratiom of {5) vieids

] ,
::;(o) . :i(o) {Eg% %} op {-j: afot)a’). (8)

Ve aou padume thel the smplitude of *he surface weve 8t Q, is pruportional
L0 the saplitude of the iacidont wave ot thot point,
Qy i
:oi.::‘}* &0, )3, (q,) . (1
Nare d('l) 15 % &' ffraction coefficient, Prom {i,iy) ve ohtain the formula for
Ehe swpiitice ::(p) of the dilfracied \ave a% & &8sty 2 along the Siffrected

3y from the po.t ’x'

e Tt o0 ’ 217 ;,{ﬂ’ )

The quantitics o,, 7, a0, . and 46, are defined in section 7. Yo aseum *hat the




arpiitude of ‘e diftracted wave 1. proportionnl to Lhat of the surface wave at

the point Pl.‘ X
oy = wTfare )zt
LO.O) \pl’ZO(Pl) .

(9)
The diffraction coefficients J(Ql) and d(?l) are assumed to be the same function
of the properties of the surface, medium, and the field at the respective points

Q, anl P.. This assumption is he=mi un the reciprocity principle--a scurce at

Q produces the same field at P that a source at P produces at Q. Wwe shal) ree that
the valucs of the diffraction coefficients and the dccay exponent dcpend n L.e

boundary condition.
Fram (6 - 9) wve nov obtaln

P N\
; 4wQq)  nlQ) e 4 [} ’ |
z0(P) = k™S4(P laig, ):;(Q!)[m ‘n'?pL)‘a stn v ﬁ,—r} cxpi- [ a(a)d-»j . {10
!

Then thv ledllng Lexs of Lhe 41ffyacted fteld to given by (4), (1C), and

1xad(p) 4,
- &\

2
u (P} o

P} 1)

<
© L ik :$, vhich no doner

There snmtions vere derived uaine the surface vave u =~
appeers in the resull. Tiw swiscy vave i8 Qo onh asysplotic cupriizniztion o7 tke
true solution 8t the boundary. (This l¢ especially cleer $f the btoundsry condition
16 ur 3.} It 13 nerely m convenient intermediete step Iv™ e descripltion of the

JLTFTractet vmes.,  The l1atter {r 2inpular ot the heunduey hwcatas the difiTacied mve

hve & CBUS iv "lere.

Nr congtiictian 28 TET 18 not guite complote, Actumlly the diffrectied wve
consi ;e oF 3 nmter of moles uj; = 1,7, ... of vhich ve heve constracts:! <y e
th (12). Wch wode s it owm diffraction coefficient 4. end decay expiivnt 3.

Thus the M ffracied {lold 13 giver by

RS
“The factor &7 15 (9) 1z required In Order iiat 3P ; slould be dimensioniesc.
{See Fpm:ion "7.20)0)




d01d92 % _% 1 o
X —_—da(P)] Zk dJ(Pl)dj(Ql) exp --/ aslodasp . (12)

ror the casc of u humokensvus medluwn, 6 lo consbant and (7.21) and

Yo
: () P 3
d i, L . 2
1 (P)"'ZU\Q.l)exp ik [s (Q,l)+rn+na.” ﬂfl-,m ; W]

[ .
|
-

§

¥

+

[

P
L ~1 ‘
X Z K ® d‘j(Pl)dj\"”J) exp{-b/ H-J(O)ﬂd ) (13)

Here o is the dlstance from P, to P end + is the distance from Ql to P along

the surface geodesic. Values of dvy and a, will be given in (19,13) and (19.1))

J J

of Sectlon 19.

) ingtead of (7,10) 4n deriving (8} then (12) takes the

form

P1

o)

x Ny x"ﬁ (B, )4,(Q,) e - (ol (14)
2 T By (@) exp g = poyfentop
J Y
We see rom {7.23) t
""J"d!(y i - —a(d. (15)

ol - ‘
dalPp) p! Pl boda(P)

Ilere [ 13 a point on the diffracted ray Joining P1 and P and % denotes Lhe

distance from P.-1 to P' ulong this wray.

I 4 1 \ ~y :g\

1 n{g,) d&p) |*

P) ~ % (Ql exp 11\[ \ + [ ndo 4'"‘ nd‘l] L [‘\T’PAS _n(ip's ‘_dﬂ%;]
o

s wacan

4
i
-
[
13
$
¢
L
i
¢
.
!
;
§
.}. |
N
if
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From (18.7) urd (18.9) we eee that the diffraction coefficient r'l.1
is dimensionless and (13.5) shows that the decay exponent cl.‘1 has the dimension of
a reciprocal length. The diffraction coefficient must depend on k because
we expect it to vanish for k -w, Thus d ) must be a function of xa where a

iv g lugll. ™y asmums 4hat fav & homsranaone medfym n s the radius of
curvature of the nurmul section of O In the ray dircction. We also assume that

u, depends oniy on k and a. Then d J and a.d can be abtained from the asympteti .

J
expansion of the exact solution of a problem with some simple surface §. In thie
section we shall find the expresaion for the field produced by a line source
which {s parallel to a cirenlsr cylinder of radius ¢ in a medium with index

of refraction n = 1. Comparison with the exact solution will yield the

Lt

coafficients 4 J and °’J' The problem,which is two-dimonsions),is illustrated

: > W(p,0)

L}
Let r denota distance from the source point Q vhich is located

In the folloving figvre: iy

¥(r,0

at the point with pclar co-ordinates (5, 0). We take the incident wave,

producod by this source to be (compare section 9)

\ [ipticr’
1- H(l)kr -~ é?—..-—.— . 1
ot = o) o (1)

*# The material in this section 1o besed on [29]. ;

o rmr— -, s g e

e




The surface rays, which are geodesics on the cylinder are clearly ercs of the

circles which generate ithe cylinder, and in (1€.13) it 18 clear that

dw(Q,)
a"(j;l.; =1, and P, = =, The assurptions made above imply that a.‘_‘(u) = const.

and dj(P,) « d.(a.). PFurthermore, since Q, 1s a point of tangency or a ray
- v - -

] n ~n n
from @, we sce that ot Q’l R (p2-ae)1/ 2. Similerly o = (ra-a“ )l/ =,

Thus (18.13) yields

“d(r’e) - {8 iCice-a2 )1/2 (‘)2_‘2)1/2:' -1/2 e x’{ik [( pe_.a)llz +(r?- _2)1/2] e /h}

x§: dJa exp {(m-o.J) T ) (2)

Equation (2) gives the field on & rey from Q to P having an arc of
length T on the cylindexr. For the ray Q QJ.PJ.P’ T = To vhere

T, "a0 - a cou'l(a/n) -n cos.'l(a/r). (3)

But all rays vhich are tangent at Ql, encircle the cylinder n times, and leave
at Pl, alno contribute to 1he diffracted field. PFor these rays, T = Tn vhere

T, % T, + 2o, ()

We note that
(1k-a

Z . J)'rn - e(ik'“,j)'ro [%"2“(“4‘,3]-1'
n=0




\
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Therefore we may insert (&) in (2) and sum over n. This ylelis the field

contribution

\ag(r,o) ~ (Bn)'%k'](ra-aa)'llu(oz-ae)-]'/k e::p(ik[(pa-ae)1/2+(r2-a2)1/zj+1n/h)

(€)

x; sz exp((i!:ad) 7 [l-exp[r'.’m\(ik-aj)}]'l .

At every point P there is also a contribution ug corresponding
tc rays which encircle the cylinder n times in the opponite direction and
leave at P,. ug can be obtained by replacing © by 2%-9 in (6). Then the

total diffracted field u& = ug + ug 1s given by -
.

wir,0)~ (81!)'%1&'](1-2-&2)'1/ b (p2.a2)73/b exp[lk[(oz-aa)l/aﬂrz-aa)l/ajux/u)

XJZ dJa [1-exp(2u(1k-a.J)l]'l[exp((ik-c.J)lolﬂxp((ik-u.")n(ax-e)l]

X exp H“M'J )a[eoa'l(a,/o)woa'l(n/r)] )

Except for the coefficients &, and ey o(7) is an sxplicit formula

J
for the leading term of the diffracted field. In the wimdow region, this is

tke only field. In the "1it region" it must be added to the incident and

reflected fields., The coefficients dJ and “’J depend, of course, on the
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boundary condition specified on the cylinder r = a4, We will take this
condition to be the impedance boundary condition g—g 4+ ikgu = 0, Herezisa

constant.
In [29] the above problem is solved exactly by separaticn of
variables and expanded asymptotically for large ka. The result agrees exactly

with (7) 1if we set

a, = /e ('6':_‘-2')1/3 %y, oF

(9)

Here qJ i6 the Jth golution of the equation
]
A (q,)
‘A_GAT =g 5"1/6(1‘2)]'/35, (20)
J
and A(x) i the Airy function
A(x) .o[ co-('lj-x‘r)d-r. (11)

A (x) denotes dA/dx.

i¢ clear frou the form of the reduced wirvc equation and the impedance dboundary

: I L - 1/2
8, = /8 (en)l/"{ge”“/c(g“)m [{a' (e} 2 o p2a /97

Al9

-

fdad we chosen a constant index or retraction n, other than n » 1 it

e

o

s

b RIS O

Sram  wl
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condition that (8-10) would be modified by replacing k by kn and 2 by z/n.

Tn order to determine the diffraction coefficient d J(x) ani the
decay exponent o.J(x) (at & point X on the bovndary surface) for the case of an
{nhomogeneous medium, compariscn with cther exact solutices (Sec [36] and (37)
ndicates that ve nust replace 1/a in (8-10) by the "relative curvature”

[1/a(X) + %(X)]of the surface and the diffracted ray emanating fram the point X .

Here a(X) is the radius of curvature of the narmal section of 8 at the polut
X in the direction of the surface ray at that point, and K(x) is the curvature

of the diffracted ray at X. We nov make the replacements.

Lady s 0, xomx, s +e/x) (a2)

in (8-10). The result, after some simplification of (9), is
oy0) = 48 [60m00] 1700 + x)?P, (13)
4,(x) = -a¥/2 §1/6 203 ) teoex) e

v Tapre s { A (qy)] -ife,

th

Here q: is the J soliution of the eqvicion

™ | .
“ q: o 6 W1 {Rifaromnn) 1

(%)




A ARNEY 1 ¢ G PSS S MU o 5 AL S SRS (MG % I S L

B

e o,

The boundary candition usedin detsrsdning (13-15 is the impedance boundary condition

§5¢1kw-0,m5. {16)

Hexe g‘ denotes the normal derivative. If z is nct a constant on 8 it vust be

replaced by z(X) iu (15).
2
V2 see from (13) that o, is of order KU/3, Therefare the formulss

(18:12-1h) for the leeding term of \xd sgree vith the general form of expunsi
studied in section 15. Lower order terms in the ion for o can, in
prinziple, be obtained by boundary layer nethods

A20. Zisad of & line source in 8 mlane ciratitied mediun vAh s olane bousdaxy *'
Many tnteresting i.atures of the foregoing theory can be illustrated
by considering problems in vhich the index of refraction is constant on planes.i.e.,
a function of a singls cartesian co-ordinate x, for in this case the rey equaticms
can be intesrated axplicitly. We consider a problem with a plane boundary at
xex and vith an index of refractico n{x) which incresses monotonically for

XS X . At A = x, e lupose the impedance boundary conditicn, with constant z,

gnnu-o. (1)

A Yine ammen, prnendieular to the plane of the folloving figure, inmtersects
thisplane gt the point ("o’ 0).

L )

Whis is strictly true only in the cases & = 0 and 3 = », Utnervise ve see rrom (15) that
q" ia a function of kX and the k dependence of aJ is vlscured. If, however, ve set

2w k'll3lo. vhere :, is indepwia:r of k then QJ iz independer’. of X and the above stete-

ment 1s true Jor all L

-
The material in +hia asction in based on [%],




' (o9 (%.0)
As in Section 9 we zhall characterize tke source by ih¢ inhomogeneous reduced
vave equation Pu + Kno(x)u = -a(-«-xo)b(y). It suffices to confine our attentiom
1o the const; v:tion of the “!9ld in the upper half-plane y > O.
If ve set ) = 1 and dencte the parsmeter in (2.4,3) by ¢, then
%he ray equations take the form

2 2 2
2 2 2
:;g-g,(g ).:;-;-o. @72 . @) 0, (2)

2 2
%o integrate (2) 1t fe muumttouev-g. M%x‘%')'%'g"&‘g'"
Hence v ne- a2, vhere & 1s an Arbitrary constant. The last tvo equations in (2)
nov 1xply that &X o 3y, m«g-v-f(u'- 2)3/2 (¢ ralrows that

Rk e w7

(n°-a")

) ey(x,)? f .
y(x) = ylx, ! -":gf‘z)m
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The »ayr emanating fro the gource will be called "incident"
rays. Lct tan a be the slope of such s roy ot the source. 7hen it follows from

{3) that

e = n(x ) sin a. {5)

0<a <nf2 | | right |
“{ulz <a< "j the incident rays procced 1o the {mn }lnd are given by

. (€)
- 1(= - t -—m-‘, - "m- .
y ezl \[o (n?- a2)}/2 [ ml. #2)M?

Bere x< and x> denote respectively the sugller and larger of x ani Xy

o i/ <a < # some Ligtdent vays DSt the Loundary snd wre reflected
*hile the otueri Lecons verticul and Are turned bock to the right bcfere hitting
the boundzry, Yo see frow (3) tatl (%) that cuch tuonine points occur “hen
nix) =2 » n(xo) sin @, Boyowli the tvruin: point su=h rey: will w culled
yefrected reve. A porticular rry, ‘nth & = "h' 13 tunrent to the boundrry; i.e,,
1t turntn poiiL fs At x - "yt Thac "b i3 determined dy the squiticn

r(x,) = nfX)) atn o, (1)
Thiv "limiting rey" 1v fllustrated in the flgurs, Tts contimmtion lies %n the

sladw Loundary, Ireivsut ruyn vith /i € X ab pcluce ceiooted rays at theiy
turndtv; point-., Incldert reys with Ob" X < procuce rerlecte! rays at the
boundary, I ardition the iimitiug n.y prodices ¢ amrfice ray oo the houndury
ond Aiffyroted xy¥s in tiae vhadow rogion,

In order tn calouk.te the phuse on an inciaent ruy we use (2,12),

PR

e =

[ R NP N S

TR ek el




Thus we obtain
x> 2
S
J 2.2y
o< (we)
2 _ 2z
Here we have used the identi:y, dx = ¥(n” - @ )°1t, vhich was derived nhove
equation {3). (6) and (8) nov yleld

x© 2

r):> x> A
1 Fo2 2% { » 04
£ = {n”-a")" dx ¥ - -ayrf(n-u;dx.(g)
J J 2 ‘2)¥
x . x< x<

The vave produced by an isotropic 1{ne sourcec was derived in Section 3.

Tharetore from (35.10) we may conclude thai

:i - e"/h [m;-(-;; ;ﬁr]i . (10)

In order to calculamte a‘;ﬁ; ve soe froe (5) and {6) that

end from the figure ve sex that

* ‘ i

, 2_,-1/2 ay ‘]“‘ a2 2
J Y - a 1 - - » 12
nog {1 + tan®y) ["(Qx) a2 " (n - a%) (12)

Ain~e dv & dv ~ns y 1L folluve Lhat

¥ y A -
I s L LR RS M B e 7R
X n .8 )
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By insertine (13) in (10) ve obtein (2k)
1nfb [ 2 2l-ifu [ 2 2]-1/h x>n2 iz -i/2
e Ex (xo) - r.] [:.x -z Ok Taa)le .

Thus the leuding term of the incidenmt “mve is given by (0), (14) :md

. b3
u.~e1k: '1 . (15)

(-]

For o, <o <z the Licident ruy hits the boundk ry, The corresponding
reflected rey u cbtaised By reflecting the incidmt rey acrcss the horizomtal

lne y « ’1(’%’- Theref~ = it 1a iven by
b A ’r“) L 21’.(%) 'Y*(X) [ ] {l ‘L a!gl)m

T™he phose on the reflected rey is odtained by wn argument similar to that

\
. )

vhich led to (9), The result {s

.9 (1.) Oe(r-v (nb)] L (e w )1/‘

PR [ f} (o V2 g,

In order to determine the reflactad anplitude, w first ueg (10,8),

(17)

™is yields

() cos 0 -
Tlx,) = vkl s r-ﬂ%r:;-g—;-;. (8)

ES 'Dr‘

[ R I T,

WS el o B N

R et
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Bere O 15 the anpgle of incidence (or angle of reflacticr.), As in {12) ve gee

thut
cos O = n'l(xb) [nz(xb)-&ﬂz]l/z, (13)

Lince the reflection coeflicicnt r is given by

ey AR L
w R T4

r= : . (20)
[n!(xb) - ,!in§¢ @
Next ve use (3.7) and (3.8) to obtain
(x )av(x ) /2
2o = (%) [v-m‘r:? i ] (21)
and then (21), (18), end (1b) ylela
(z2)

q: . n"/,‘ ua(:tc)-n"'!]"'/k [“:(‘b)’ uz]'vi

o 2 A2 [alx) avlx, ) *
el

* (a2 “2’1/
As in (13) ve con shov thet (23)
xo
. . 2
UL N S Ml U 'ﬁv‘{é 'i}(ﬁ%'
hence (2v)
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Be drcerting (P4) 1 (ee) we obrain

ZZ . rei"/"[ng(xo)qel’l/l‘ [nz»l,x)_.zry_/“

X ~ -4
‘ [\_ r f? . ,§ l Mu:dx . -! : cann
R B A S I ~
L . "hJ J

The eadirg tey of the reflectad wave {s given by (17}, (3o}, (3%}, and

v ike" r
U o~ 2 s, . (06}

In order % Jelomelve the refracted vave ve sonsider the incident
rays vith starting engle in i tnteres) of2 2 4 d M. e velus x of

% gt ke turning potat i plenn by

5 (x,') e 8 = n(:o) ¢in ¥ . (2:)

ip s the jurning peint. (6}, (3), ert {13) are walid, Bt (1%) ja

indetermi=sio at x » Ko Therefors ve wast detemine 3% 1imit




all -

(\8)
1/2 n (x'Jax’
A n () - ¢ ‘[ —"-—l—rrn-
x—u [ ‘3 (X ) a
Tu GU bute ac ST & @ Areg t Lo " ind dwbentuna the cminsion
(29)

22(x) = nz(xa) ¢ 2on(x Mex,) + oo o 6 432 4 e, b 20 (2o

3 (33}

Then Xok,
: . /
Ao rb‘ [bvzzvz + cc-} { [ [‘g(l':.) 3 2’ u.]dl"}

¥

-
-
~

2 ? - 2
.-%— 3.]! E,_c)*.“}:o ‘Cf .3%- .:Slﬂ_)_.

Tws 4f v Lt 5 2, da (14) the vemult ia (n)

n'lx )

('o) -0“" N’(M) -We [2(1 ) ~-«}d"E '(-;rﬁ-.

™e musntity X has an imteresting geometric ilmterpretation, To vee this we
write the rey eguatiuns (2,6) in the viitor form

u’i‘oéi-ﬂ};’n ‘e i;. (32)

amoﬂuuch!ch.i' « XN, vhwre B {e the unit normml vector and X {3 the
curvaturs of the rey, Multiplicstion of (32) by W ytelis
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[a]
oK w NV(F n°) = niieVh, (33)
We now apply (33) to the incident ray at the turning point X Al this point,
'
N = (1,0), hence No¥hn = n'(xa) und K = n (“a)/"("a)' Thus we see that in (31)

K Ls the cwrvature nf the ray at tne turning point,

Beyond the twning point, the refracted ray is givon by (16) with
X, replaced by X Similarly the phase is given Ly (17) with xb replacad by
Xee The amplitude on the refrected ray can be calculated by our earlier
method although a technical difficvuliy arices in computing % from the
ray formula, (An integratlon by parts must first be performed since streight-
forward differentistion luads Lo an indstcrminate form,), The details vill ¢
omitted here,
We now coneider the diffracted field in the shadow region, The
linmiting ray is tancent tn the boundary at the point Ql . ('b' y'b)‘ It
gives rise to a surfuce ray vhich procceds along the boundary x = 'b (TN
streight line, At each poimt P, - ("b' yb) the surfu.e yay sheds & \ffyected
ray, For thece rays, a = n(xo) oin Q4 = r.(xb). Hence from (4) the diffrected
Tays are given by
n(x, Jax (34)
[n?- ne(‘bnmf :
Thus they form n Ons-parameter family of congruent curves,
In arder to apply the formula (18:1'0) for the diffructed fielA wve
must enluste the Uit (18,15), Prom (14) ve cee thet dy v ay,, hane

y =) . % *

O L b Gl

[
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dw = dy cos 7 = 4y, cos 7, Let P! = (x',y') be & point on the diffracted ray

JoLidng P, end P = (x,¥). Then

da (Pt aw(P?) cos 7{P!
an(P " * cos 7 (35)

In (18,15) o, derotes the distance from P, to I along the ray, &ince > = x/f2

vien co-Ovuseethut.

Un eccz (r) e 0 ¥(0,)<cos 1(0)

P'-® o -0 %

1 °

qav
--ﬁo.‘;

Mere X is the curvature of the diffracted ray (hance the curwature of the limiting
rev) ot the bountary, Nov from (12), n(P) cos 7(P} = (nf.a®)V

. [na(:) . na(\,)]ve. theretore frow {18,15), (33), and (36)

(31
ax(r, ) el cos Y(P') X o K[allx) - of
TR " e, o0 1) P saerm) O )

(10,14) uow siedts

2
W) . ':“L) {m[l Q) + nao » fuc)}[ n(Q ) « r

Ln 2(x)-n lxb‘}’uhz}"%ﬂlk’ Q) { 4 a M«}

4
-

.§.
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aw(Q)
Since the surface rays are stralgzipt 14 - =1, Purthe
) 7es m;r TmoOYe
n(q) = n(x,) amli ndo = n(x }(y,- 5,')e The surface S is & plane on

which n and z are constant, Therefore the diffraction coefficients at Pl
and Q’.\. are squal and the decay exponent aa is constant, Thus

P
4;1 Gj(c)da - (yb-w'b)a .

%o calculate the change in phaue along the diffrected rcy ve use
(34) %o cbtaiu

-2 V[ ] B -
43 = Jdy° + &x - R (39
3 (o +axd T .nr;*-ﬂr)] )

fndc-l: —’J;“—U! -,“[na-ne( )]Veh-»'[ ::(;;’k—v,
s SETUE S Y Y

()
. .[: [na.nafxb)]va fx + n(x My-y,)

To obtatn 1(q,) ve ruet use (31) rether than (1) vhich 1s indetersimate at
ﬁ. Tous (n)

idta) = otV a0 ) Ve (¥ ) « o, )]V,

»?
Ed

IR "

)‘“




Froo (9) x,
.1(01) 'n("bh‘b' + L [n2.n2(xb)'1/2 ax,

We ey now insert all theoe results in (38), This ylelds
(43)

-“w .“\'ﬁ
u- &"t -“-
k

ud(P) ~ [ne(xo)-n?(xb)]'lflh [52(8)°nz(l‘b)] ~ifb lw_

X exp {ik[n(zb)fy #{ £°~) i}[ne. n"'-'(:;b)]]‘,2 d{] + e:./h}
X ; d§ op { -(y\.-y;)ﬂj} .

he 4iffraciion coefficient e‘, and the decay exprasnt 03 are obtained from
(19,15 - 19) By setting a”3(X) = 3, %(K) w & @ n*(x )/n(x ), and 0{X) = a(x,),
Tous

et
!

a oinf6 3 Cs-lh(,b)llb A, ()

- "h/ﬂl ‘-115 fvt l”'ﬁn(xb)]u{‘ (V‘

x[q n(ﬁ,’ .3 {A'h‘)}’ ]’:-' s

A

J

e

/3
g - V6 3 {‘-"s’“} . ()

1te provlos discussed in this section cen be solved exactly by sepsration

of varisbles. The asymptotic cxpansion of the olution can be obtaibed by
applying asysptori: sethis (the *¥.K.B. wethod") for ordering differentisl
equations. When thie is doue the results agrec with those we have derived (see (311).




B. Agymptotic i~thods for M.mecllts louations

Bl, _Time.barmmic Sotutions of Maxwell's equations

Aghoush golutions of the vave equation are fyequently used to describe
optical phencnena, it 15 well known ihat a rigorous deseription of optical
and other electromagnetic phencmena can be obtained only by solving Maxvell's
armatine Prm tha alantwemonabin Pald At hich fremienniss. aaymkabie
wethuls are particularly useful for thie arpose, We gholl see that mony
features of the a.ymptotic methol for salving Maxwell's equations are similav

to thosc vhich ve have examined for the reduced vave equation, and ve shall
mke full use of the similarity, Nevertheless the vector charecter of the
<l.tromgnetic problem introduces significunt differences vhich we shell
omuine in detail, Jor the mterial in this chapter ve are largely indedted to
RK, Lunburg [34],

Trocoeding se in chapter A ve sholl samme ‘wrupnic time dependence
and derive the time redused form of Muell's equztions, Thon an csymplotic
series will be inserted Lo thess syuiutions, and equotions for phase and
aplitude functions vill be derived, Ve vill see that the plmse function
again sstisfies the sfooml equation, Fur this resson much of ouwr earlier vork
vill be directly spplicsble, In particular ve shall have the sase ey squatioms,
e min difference in the elactrom gnetic theory liss 1o the vecter olm-weter
of the asglitude, Hwever, even here the assentisl fusturc remins: %The
componets of .ie amplitude fumctions satiefy crdimary differemiial equations
(srenspors equations) along the reys,

" it ek, itk R i o KIS 5 b . o 1Bl SO ot R a0 M S

e s i

ERN
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In WK,S, uwnits [36], Mavell's equations take the form

(1)
()
(2)
(s)
A a
fere € (X,t), W(X,t), ere the (resl) alectric and mgwtic field vectors,
and «fX), u(X), and ol(r) sre the dielectric "eonstont™, mgnetic permeadility,
eud conluctivity of the med'm, B(X,t) is the electric charse denaity,

€, u, ond % ore sssumad to be plece-vise swooth “unctions of X,
Ve siall be interested in tims-Mermonic fields, of the furm

Etxe) « JE (xk""]. W) e e[ 0er4] - (o)

Then it 18 eaay to see that (1) end (2) ore mtizfied, provided the (complex)
vectors £, A mslefy the time-reduced equations

Vx"«au&-clﬁ; IxE- tuMN=0, (6)

Prom the cscond, equation it Zollovs fwwdtetely thet P(n ) » 0, oo (3) is
automtically casiafied, (i) my de thoucht of simply es & definition of A,

*In our notation we have reserved the sywbols B and R for the lesding torm of the
anplitudes of the clectric snd mpwtic field vectars., This accoumts for the
unorthodox notating in the firmt fev aquutions,

O
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E!A-OiB, 8‘!‘--130 (7)

Here A, B are vectors with real corponents =nd the ber d-potes the cormiex
conjuppte, Thus froz (5)

E. % (B, F ALY e o ain (R)

It rallovs from this equation that as t varies (at oach point X) the
~ ~ ~ A
vectar & (X,t) = (£ v Ea 83) descsibes an ellipce vhich lies in tiu: plane

de:srmined by . ap® R, Tuts plane of polarization is therefore perpariiculsr

to tix vector
Pxirege [@BxA-uuxe] .4 ExE, )

Ton principml sxen of the ellipee corrorpond £0 the ectrese wulues

g;_%(ea..xm B L0, 8, (10)

Buetitg 80 sero the § Agrivative of (10) ytelds
e L JE‘IEE. ()

If we inrert (n)xa(m)wmmtmmwmai?m

e.he.Er SETET ),

st i Bay Mg

. e i e i




2. L 5’18: é":

L.EEE”

(13)

13 ealled the ellipticity, The polarisation ic circular if 8 =1, 1,0, if

82 e éz'ot

and Mneor if 8 » 0, {,e,, 1f

0. (€ E).E28% . (ExE). (BxE)
« (ExE)* (EXT)

Bovever, for any complex vector, C « (C,, €y c,)a el . |°1|2 + |°-g|2 ' |°3|"ﬁ

(1)

cen vanish only if C « O, Hence the polsrimstion is lincar if «d omly if

Ex!-o.

It te easy $0 ahov that (16) 13 equivalent to Sie condition

!- a0

vhere 1 13 8 {couplex) scelar and G is w veal vector,

mwm&xuumw

(28)




Prom (8) and the amalogous equation rar‘fhe 1s easy to shov thet

vefeeoto une k], (22)

3’-%[8::17‘&:”]. {3)

Thesc cquations hold provided ¥ = 45, vhere ) 10 & posttive imteger, or
T e,

In empty space ¢(X) and u(X) have the constent values ¢, o 8,850Q0°
Wmmu,-x.mm“ beary/uster (38). The comstam o, ® (c,uo)"/‘
o 29919000 mever/oee 1o the fumiliar “ipesd of LgM", As in chapter A ve
tmrohun the propamtion canstant (or suve muber) k = wfe , and ve aseume it

TR

Bk s e NG . il BB e iy el R el

V¥




« N w
the complex vectors & , ¥ bave asymptotic expansicns of the farm
E~e™ 3 (1) B, M o~e™ }:"(u)" Hye (1)
0 0

™e real scalar function s(X) 1s sgain called the phase function (or phase),
If ve insert (1) tn (1.6) and collect coefficients of the same povers of (ik)
ve odtain

R L T Ty,

BXB ST, s R e Ry BB CIXE,) ol O
(?)

881,200

The equations for m » O ere

¢
3
!
s
i
?
3
!

‘X!Qcoﬂua. vuﬂ-ocul-o.

Here, and {0 all sudsequent squations, we umit the mbecript ievo,

Ve ses st once frem (3) that

E' HeBe BaBbWBaeo .

U e b Lo B Tl o o e b

By elisimting ¥ from (3) ve cbtain
CCwEs-Nxve e Wi

I8 followe Mmb, I B is wausenro, a{x} must 30%'3%y
the efoom] egmtion




(v)? = né(x).

here n(%) ts the index of refraction of the medium, defined by the equaticn

2 2 €02 2 1
n -°°w-%o-;%(‘x)' ¢“(X) = orveTe) * m

Ve note the ispirtant fact that the ptase s(X) egain satisfies the
elcooal aquaticon, It follows d2at the min features (rys, wve-framts, wte,)
of cus expansicn vill be the same as those of c'apter A, In yarticular the
results of sections A2 and AS can be carrisd over unchanged,

2. The trensport equations for the aaplitude
It wo tneert (2.1) duto (1.22) and (L.23) we see that V' w v + O("2)
and § o 8 + O{x") vhere

vl nnl-q. Q)

s-*[lxkolxg.

v from (2,3))
ectl" e (N x %)¥, ooﬂl o (T x %)8, )

sxlalxa~d (%, )

.03

1o (3) the left cides are real. Thue the Pight nides, which wid cORJSRLes
of eash olher, et De egml, It followe that

S v e el A AL weekis w e e
-,




e 0 o B

v:%c:-i-%aun-ﬁ, 15)
1 v co"
Sey— (BPE)Vgun~"a %, (6)
“®o ™ -l?_
and
°°' wde 'v';. (-._';

In order to obtain differential equations for K end § along 8 My,
un retore to (2,2) for m o 1, Jor conveniesce, ve sst Vs = R and sn:wtrise
the equations by introducing & fictiticus mgaetic conduetivity e, (vhieh
later vil) be set equal to zero), Them (2,2) ylelds

()
lxll‘eodl--vul-ocll, lx:‘-eou&--'ac-oal.

These equations are symmtriz undar replocerent cf

M.oﬂoﬁn’. by KB, -1, <8, <3y, =0, 10))

Toey ciso Lagly Dev vowliticas on R ant R, To thinin thees 2ouditions, we
firet note Umt R x (RX 1) « (B2, )eagel, , eame ¥ o ofu It we
mltiply the firet equatics (8) by o p and add 18 to the vector product of B
vith the seeond squatice we cbtals

(l.:l)l-.c‘px:.lx(‘?xt).v'ax!ecéaaxt. {10)

R ]

R T ¥ Py T

T e e T S




“100 ® £3
pt fram (2,3)
nxn+c°¢3-o, RXE.cul=0, (1)
Hence
(12)
ax r ':'-.-'!q-.--.-‘.-,la-.-!‘?-.;:e. .'2:.-,,;:‘:.,;
a o~ L ..\n...-; 0 Y .-,-v.°§u 1;_J o

Thus ve have obtained an eqation invalving E from vhich ‘1’ l‘, and R L.ive
beun elimirated,

v © xu-Vx(vn)-oqu(%n)-w%)xa. Bnce
(1)
R

lx{xuﬁx%n)}-nx{u!}(&)xﬂ} -Rx {.[..qg)]} -0

Tras: (12) my do written oo
¢1Y)

lx{ 'xf%lxl) oélx (Vx l)olt(vxél)-ee(-‘%'oct)z} =0,

hmmén-nmmmmmtm
(1)

Ox (‘xg) eax (Yxg) egx W!A)--?(ﬁi'lag.OA’a’)

o FPA ¢ A58 + YaeB),

Siase R « O 1t followe timt {1M) 1o egudivalant to

TN

Y12 TN preedr

R o S ETY - 7 TR TR T R s il gy

n stk W Mo A




-1 - b3
(16)
. B {2@1 !;onégz*nsga) +uﬂ'(%n) +c°(¢¢2+n¢1)l} - 0,

Let X = X(v) Lo the equation of « ray, and let us choose the paramster
v s0 that Iil -|?f| « 2, [Bee the rey equations (A2+8), (A2,9)]. Then

X% «Re (17)

Tous (BB« (008 = 5, Vo use thte 1o (26) end note that the qeamtity
in breces must be peraliel to R, Therefore (16) may be writtes as

gogkv‘(%h)t:g-(qaaowl)lnﬂ . (18)

Sarv £ v £0 39 &ctormiced, However, MR » 0 and R u O, Therefore,by
soalar mitiplicstion of (i8) by R, ve cbiein

pedy (a-§) -4 (:g) G9)

Arthoruore, frem (A2,8)
g-?-i'(ne)-nvn. (#0)

mw (19) st (30) yiala

8.2, (n)

W ank {mtrodre the notetions




N - 302 = B3
A WG R e %R G e ) Gs, ) =ae (22)
1B T3 ‘W . [ x1 xJ we

(If 4 = const, A“ is the laplacian operator), How (18) becomes

g—‘} +% Eds + (%'2) Vs +;9 (s0, + 4o )B = 0, (23)

By means of the symmet:ry property (9) ve chtain an equation amalogous to
(23) for H, Ve then set 0, = 0 in (23) and 1in this equation to obtatn

%_E +% (Au. " coclu)g + (E;&) Vs » 0, (24)
5 % +,‘1, (8,2 +c au + /\%‘Z‘&) Vs = 0, (3)

‘hese ordimary differentisl equations for X and H wlong & rey can
be simpliried, T¢ 40 go we introduce the vector

¢
’-%—uau—g ? 3, (26)
n
Then, umoquc-%v.-i.%v..n.“p.v,,

A“o-u‘(d)-f;“roubw-fgvtr#ﬂ'— g ¢ . (o)
o °
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By {aserting (27) into (24) we obtuin

(22)

2 ; ;
dE l/a n S’%v
a—;-&-é(a;logc-b?%r +c°olu)x¢(——n ) 8=0C,
(]

%;(ﬁl) ¢% (H:vir¢c°c1u) ﬁx-o(&-!i?—&‘—)vc-t\. (30)
e
°

The analogous eguetica for R s

%(ﬁl’oi(gwuﬁu) ﬂno(ﬁp) %0 (2)
o

Theee equations, which determine hov ¥ apd R vary slong & rey, cun
be replaced by simpler equations for ths mgnituds and direction of them
vectare, thﬁuanlWMlnvlmwm

differemtial equation
§ 208w, - GV P oo (32)
¢
)

apl the inltial condition

{
i
4
4
]
i
3
3
: |
|
:
1
4
K
{



- 10‘;-

v

: (33)

=2v . tB‘i-uH-H,atv-ro.

Bere %o ts some point on the ruy, Iel Py Q bu complex veclurs defined Ly the
equations

fits /B P fiue fRQ {3b)

Then P and Q are unitary vectors {l,v,, PoF w» QQ = 1) o v = Toe When
(34) s inserted into it, (30) becouss
(33)
(-]

and (31) lends to & similar equation for Q, This aquation and (39) etsplify

whon (32) 1s used, and thé rosults ore
(%)

g.bBo .o, oo elEnag oI
a a

Prem (34) and (2,4) ve sae that

p
7
i
il
2
i
Ly
]
4
1
L]
g
!
i
4
1
i
:
:
i
!
!
!
]

PQ o % « %o, (s1)

s I W 4 6 . il A e By s il s AP T

If ve multiply the firet equatiocn ia (36) by F» and uee the fact shet B % o O,
v dvtatz o 00, ., oP = scoet, In the sams vy ve prove thmt

§'Q » const,, snd it follovs Ahat P end Q are unitary vestors for a)l 4, It
also followe rrom (34) thes ¥ o v, F o W, *nen from (5) w see tat




-1 = B3
¥, = v and ve my hencefarth oa’t the subscript 1, The differential equaticns
(36) w11l be further analyzed in section 6, Wow we shall emmine (32) vhich
dsteruines the sero-order averuge encrgy density v,

&mo%;lcgv =%W-V-, (32) ylelas

Qe Vg +v[bo * nev(#).vn +a, alﬂ a0

v"::i v.) QI?' Ooﬂlu = 0,

g..x.{,,'f.l...,-}

Ve nov set

W » § R
hen {39) end (1) yield

V-(u"-;‘h)-qﬁ'-(fgvo)‘;‘,’ coclozl-& (=)
)

Bt (A2) 4o of the same form c. equation (A3,A) snd hence a sizple applicetion
of (huse' Aheorel, &8 in 3ection 13, yields

? » ctom, (M)

)

. (v Yel+,)




- 108 = B4

If ¢ is an arclength paremeter on the ;ay, (Ac+10) shows that do = ndv, Hence

e pdo
e udr = -g—- -‘/-g- 40, ard (44) vecomes

w(o)ifa) _ ¥{%)5(%)

g
w(e) T wley o o [ WEULY (43)
[+
Bquatisn (43) determines the variation Sf the serd.order sverege
energy density v along a rey, It is theemlogue of the selution (A3.8)
of the zero-order transport equation for the redveed vave equation,

¢o) &&b is the expension retio introduced in wection A3, The higler witer

transport equaticns for Muell's equations are amly wd in [27].
amv-vlwwmnormmmnmm. Ram R can
be determined from (34) and (43) omce the polarizstion vectors, P and Q are
found, The equations for P and Q cre studied in the next section,
In & mediue for viich o, u O, (53) decomes

i‘ = congtamt, (%)

™ia equation expresses the well-known wrineiple of energy conservation in @
tube of reys, (43) describes the dissipationof emergy dus %0 the conductivity of
the mediua,

Ba,  Thg trenct-t equations for She polapipetion vegtors

A.cording %0 (1,9) the plane of polarisation 3 perpendicular to the
m&!xi. 00 £0 sero arder i* is perpendicular %0 Ahe vectors

Lok g e wa e F

1 e R A Wl SR S £

i
H
;
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i
i
i
i
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i
i
‘
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i
1
i




%nxﬁam"ﬁpxﬁ. Bt

Bx(PXP)u(YaeFp.(mePP-o, (1)

Therefore the plane of polarisstion is yerpenticular to %, 1,e,, parpenticuler

to the rey, IFrom (1,13) ve see tiat to zero arder the ellipticity is given by

0. :.!.ﬁrr’ ) le W
!-!d-ﬁ 1*5’? ) @
Bgustion (3,36) ixplies that P° and 5 are constezt on s rey, Bence the
Prom (L,17) e see t2at for \be oape of Lipser polarisaticn P is

proportionsl £0 & resl vector, 1,0,y

Mrohml.Mohumwccfmummauem
om & yay. RNrtherucee
1"0,"25 (b)

§
i
1
-
4
i
3
!
i
:
3
?
l
{
j
!

i.e,, ro 1s & res) 'ni% wector,

Prom (2.3) and (3,34) ve nov wec tat

Q-Tx?-lﬂo. %11)(’0;
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3
3
4
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T
|9 °
T, Po. and Qu ore orthogonal unit voctors.

B 1l

Puthermore, it ls eusy to see that to zero crder

Here ve have abaorbed the {constant) phase of a into s which is undstermined
up to an sdditive constant on 8 ray,

Zor the case of livear polarization ve may replace P Ly Py lu {3.36),
and vrite that equation in the form

Py ¢ [P+ (aX')'X* = 0, (9)
Nere ve have used (AZ,%) in the form

(ox*)* - V. (10)

The prime dmotes differemtistion with respeet to the erclength,¢. Bovever,

o' X' = 0. Bemce ro-(nx' ) @ By (nX® 4 n'X!) @ uPy X*, and (9) vecomss

By 4 (P X")K = 0. (1)
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Ve next apply the theory of cpace curves to the ray, und introduce

"
the tangent vector T = X', the principel normal vectar N = —;—; , and the

binormal vector B = Px N Thess vectors satialy the Frenet equations

T = KN, (12)
N' = -7 + 7B, (13)

B e oyn, {3k}

Here K is the principal curvature and y is the torsion of the curve, With
these formulas, (11) becomes

Pb + K(Po‘l)l .0,

8ince Po is noreal) to T,

ro-ann; d"'*oz-l..
I we tnsert (15) into (15) ve ovtain

O'N ¢ Q' ¢ P'B +PB' ¢+ KT w0,

(e - y8)8 + (B* +ay)B = O,
It follows that

@ .70a0;p +e0
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%5 (o + 18) +iy{o + 48} = N,

This equation has the solution ¢

-1/ 7dc'
a+15-(a°+‘160)e o
Let O be the angle betveen Py, éud X {322 fizure),

%

%o

i.0., Cmgos O, B =« «8in 0, Gy, = cos oo. ’o = -8in °0°

U

v

Then (21) becomes

and from (16)
Py=Ncoe 0-Bsin 0. (23)

mqo.rxpo.'ru.n,m'rxn..l. 1t follovs from (23) that

%-lo&nd#)cuo. (2x)

(22), (23), ant {2h) glve the ret~tion of the polarieation warters T, Q

o A MO (i £ 510 S5 ki b 8 S el S,
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B

relutive 2o Band N, If the rey remins in one plane, then y = 0, and O is
coustant wivig & 1ay. A sufficient (but not a necessary) condition for this is

that the medium be homogeneous, i.e.,that n = constant.

P53 Reflection and trensmission at an interface,

In this section, we focus owr attention on an interfage or surfwce 8
wvhich separetes two regions in vhich ¢ and U are swooth functious. These
functions my hava jump dlscontimuities across 8. In regions 1l and 2, we

The values of the reflected and transmitted fields at the interfure
oan be derived from the well.Xnowm ddscontinuity conditions for the

OlOOUrOEAENETIL iivdd, wiivh awgwiio ShI SSEBLinitu A2 Sha temmndt in) amannamis
A A

of £ am 2 and therefove of £ and 76 . Bince ve sosum Aa¢ the ineident

and ieflscted £ields are dafincd in regiom 1, and the sransmitted fi0l4 1s Qafined

in regicn 2, the conditicns become ()
lx(E‘ oe')-lxgg, lx(#" QM) ~Wx #‘. o 8.

Iare ¥ denctes & unit vector normal S0 I’ pointing in the direction from
regicn 1 40 regicn 2 (see figure),
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Brch field is of the form (2.1), =0 it satisties (2.2), (2.3), ete.
By inserting the expansions (2.1) into (1) ve obtain
.1 - .r a 't’ on 8, (2’

ani, far the zava.order confficients,

nx(gi*zr)-ux:t. ux(a1 +%)-nxqt,cns. {3)

From (2.3), ve Mave

Vui XE +e,r e 0, %1 X R - SR = 0, (&)
v‘r x x‘ * °o‘1'r = 0, Var x \_ - °o"1lr = 0, (5)
v\lltioo%-o. Vutx\-coual‘-c. (6)

Ue nov introduce the paramctric cqunticn fav the surface 8,

X« x(¢), &) =x(t). )
™hen (2) may be vritten
s, [(X(€)] - s, [X(8)) o OJ_Y(Q)]. (8)
Differensistion of (8) vith respect to gmt‘m
Byt et otk s Ty X debn ®

“"‘“""‘“"“(, are tangential te 8, (9) Lmpdies tint the differenses

“'%'.w’o\"ﬂw“"‘..o'
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Y%, - Vo, + 78K, Vo, = Y, + 7,8 (10)

It follows that Vtr and v't (and hence tho reflacted and trenswitted rays)
at 8 1ie in the plane of incidence deternined by Vai apd K. (This plane
is the plane of the figure.) Murthermore (10) implies tiat there exists a
unit vecter ¥V and 2 real scalar & such that

v.rxn.v.‘xn.v.tu..v. (1)

V is perpendiculsr to the plane of incidence. (In the figure V points imo
the paper).

By equating the magnitudes of the vectors in (11), ve ovtain
hzﬂnﬂ'tuldnﬂonaltlc"l. (12)

The angles Q, 0', O" appear in the rigure. It is clenr thot the only saluticns
of (12) consistent vith the figure arve

D'-a-ﬂ. (l))
and
uno'-;:uao; 0cQegfp, (an)

{(13) ssd (28) soy o rvescmised oz t™ Jev of Tatiation, and Sell's lovw
of refrecticy. If

% sta o>l {29)

e
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then (1b4) has no real soluticn O', This is the case of total reflection
discusued in Section Al3.

In order t¢ determine the sxplitudes of the reflected and trenamitted
fields, it is convenient to introduce the 3 unit vectars

Q-wayﬁ, %.waJﬁ, %.van% (26)

vhich eppear in the figure. Since B, ls wthqulltovo*. 1t oan be ®mxpresscd
as & linedr combimtion of vi and ¥V, The same assertion applies to

Ko B B Ry K Ts ve cay eet

Vol = qy o80T, VEE 2q ¥ 98Y, VTR -q¥ hY.  OD

Then 1t is easy to show that (M-S} are setisfied prawideq
(18)

i By« By 4V, VB AN, ViR - -8 Y A

In =dar %0 apply (J)wﬁmwmﬁnv‘xl-
('xvcalnl;xl--'(vo, + Mo, ) » -V ene 0, and Aherefors

Vo (R ) © a,(vxE) ¢ 8, (na) « -a ¥ con 0 ¢ BN (29)

l,m-—.—ax v;-mo‘:‘-- \ A 3N !‘w-:LVMOQ:L'II.
vq va ] 4

L ek
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Simtilarly,
()
A P %
B xN= Vcos 0 4" VXN, H)XNn .=— Voog 0+ ——VxHK,
VY L vy vy

[&X))
A\ g

- 8, n
t‘xl--—-‘-VconO'Q..&Vx n, ntxn-—_;_l ¥ cos 0! ojvxl.
& L v¥a iy

Jore ve "wy3 used the fact that

e Q" - 122 - 0) @ 208 O, (23)

If ve uov insert (20-22) 1o (3) ve oxtain
q-q-- f3 BEaseg-fBa

'r"l"/é 'é%'%" L ’r"t‘é b

T™hi .2 cquadions oan de mmma,.a'.g, atumarmm
:‘.a‘u‘mtmm rield. Pw residt is

Afimt L B-Ber

%
“Rfime R Ree

(av)




The components @, £ of the fields are, vespectively, parallel and

Lo winma ol Ju-ddanan TE s mamabiman susbomawr $0 nre ¢he
48 SOomotanmie quIuosmYy To nte T
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lor g ri vv Wi Ml W At —nes. -

notetionr for the parallel and norml components of the elsctyric fleld:

d

Eip J—l

If ve assume that

and vet ny - c VB, Ny v c, JT U, thea (27) Lecomes

n, cos o

FULP
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These formilaa avwe {dentical to the Fresnel formulas for reflection and i

transuiss'on of a planc electromignetic vave at a plane i:terface. We lave,
of course, show: that they are valid for the zerc-order terms of the

asysptotic e>pansion of an arbitary electromgnetic vave at an arbitrary

o o l— ke e e

(smooth) interince. ny using Liwe resulle (28} o3 2ndt cndidtone ¢

slectric field cn the reflectel and transmitted inys, She Zero-order reflmuted

-t

]
end transmitted fields can B fowul w3y from the fxierface, i
§
) B6 Reflection from a perfectly conducting surface ;
The vell-knovn condition or the electramgoetic field et the surfuce !
of & perfact contuztor 1e that the tangrrtis\ compooent of & mist venish. :
In contrast vith section 5, we have only incident and reflected fields, and A
the boundery condition may be stated in the form :
i
R x(B +8)e0 (1) :
The 2ousequenctes of this condition can be cbtained easily by sisply moditying 4
tha equations of section 3 in an cbvious way. In this secticn ve list the '
wodified equtions, using the same equation mumbers ©o iacilitate the ’
comparivon. Thus ve cbtain
g -8 o8, (2)
¥x (R +2)e0 $))
O en.0 (3)
J




VEE =av, +8Y, VEE =aV +BYV (17)
Vi B « BV, +aV, ViR -V, +aV 8)

Gr - &1 » B!‘ = ’51’ (5)
gt'))-!lp’ Em--B . (28)

Hore, as in section %, subscripis p and n dencte components of ‘t and Kr
parellel and norml to the plans of incidence. As before, these values esn
he used s initial conditions to deturmine the reflected field sll along
the reflected reys.

371 12 8, diffraction

In order to discuss radistion from gources and diffrection, only
alight wodifications of the results of chapter A are required. In this
section ve present those modificationa, together with e sumary of the results
of the presant chapter. Equations vhich are takon fron earlior sections have
ousbers tO woeir left which indioats their origin.

in M.K.8, units, Liu real Lime-lmrwonle electric and wegnetic fields

are glven by

a3 Exe e m[ﬁ (x)r“‘], ﬁ(x,g) . a.[m:w"‘]. Q)
e complex vectors & (X) and I (X) cattery

AN . M £ D v s A g i
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(1.6) IxFswe k- B, Vx& awH .o, (2)

Here «(X), »(X), and al(x) ave piven functions which charecierize the medium,

Yor large x = u/co (co =3 X% 108 meter/sec) we introduca the

asymptotic expansions

(2.1) £ }.; (x)y"r, ﬂ"‘.mg () B, (3)
o

The sero order amplitude vectors, Bo » Band n° = B satisfy

VaxHec B0, lel-cou!-o, (%)

EFHaE% e« B%.0, ()
whils s(X) sutinfice the eicomsl equation
(2.6) (Vu)a . n"’(x).
. .

e
Y
(2.7) nf . aozcn - -?:‘-‘° - ;i-(-x) ’ ce(l) . m"-u, . (1)

uation (&) shovs that K osn he dbtained from & knowledge of B
{and vice-versu), (7) shows that B and I are mstuelly arthogonsl and each
orthogonal t0 %h, 1.e,,%0 the rey. From (6) 1t follows that the phmse o(X)
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and rayc are given by the equations of sections A2 and A6,

Ye Adafine the zero.order erergy density function
(3.5) Vo %c EE = %u :0:
and the polarization vectors, P and Q, by
(3.34) Ea= V? P, R -\/ax- Q.
Then
PPel, QQ=1, PRe0, (20)

and P and Q each satisiy the fivst order system of ordimary differential

equations
(3.36) g w0 (1)
n

Bere © denotes arclength slong & rey. Tha velue of v nlong & rey is given

v vio ) ¢(o,) i ,
G o e ol o i {[ 9 c"“"}-
[-]

Bore & (o) - ﬁ%b— is the expansion ratio imtroduced in Section A3, If
R and Il are given at some poimt 0, on & rey, then Lt this point v, P, a2 Q

oan be obiuined from (0) end (9). At any other poir* o, on the reay v is
given hy (12) and P and Q can be cbtained by sulvine (11). Then fimliy




et o, E and H are given by (9).

PRI

The plane of polarization of the electric field is perpendicular to
the ray and the vlliptieity is constant on a ray. For the specisl case of
linear polarization, 1.e.,zero ellipticity, additionnl conclusionscan de

dvavm. In this case,

PR P A

{13)

Here 8 43 o couplex uunmber of modulus onc anl P, and §, are real unit vectors

vhich are mutumlly orthogonsl and orthogoral to the ray. Farthermore toO tero
order

A

(4.7) &~ @ cos[ka-wt]P , (1b)

Rt edd D ad N e v

(4.8) ﬁ-v@ coonu-vejqo. (13)

In sddition (for the case ¢ lincar polarizution) the rotation of the polariatiocs
vectors P, and O.o are given hy

(4. 23) Y, ~Bcot 0 - Rsino, {16)

(4. 28) Q, = Kotn O +Bcos 0, Qan

Bere ¥ and B are the writ norssl and tinormsl vectors of the ray, amd
[ ]
(4. 22) 0wo, + [ 1“'. (18)

°
748 the tarsion of the rey.
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The conditions for reticctiion and transmisuion ot an inmterfucc are
given by {2), {13), (1%}, and (25) or (28) of sectirn 5, Similerly tﬁe
conditions for reflection at a perfect conductor 2ve given by {2), (13' anmd
(25) or (28) of section &,

Homogeneous media
Let us call a medium hamogenecus if n{X) = constant, Since in
applicstions i is uimost clwvays o constant, constency of n means tnet &

is constent to0o. In this cuse the rayu asw sbialght lines cnd the phase is

given by
(Ak.2) ses, 400 . (19)

Prom (11) we see that vua vectors P and Q are constent on & »ay and hence
(to zero order) the direction of the mJjar end minor axen of the ellipse
of polarisation are constant. The expansion ratio is given by
(5,+ o)(p, +0)
(A, 4) 8(0) » —dmr i, (20)
1P

and hence {12) vecomss (21)
(py+0) (p,+0) g
v(0) = w(a ) W exp{ -/gl; clda'}
b and B, are constanta on & ray, From (9) an2 (21) we new have

E(a) « E(o,) [&;;;1%};}3]"2 .n{.gﬁ: [ o do*

am a similar equation for H,

T s A0 A e

T3 R e g
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Rodiation from sources

As 1n seetiun AT, point, line, and surface sources may be
cliwpucterized by giving the values of s, E, and K (or of s, v, P, and Q) on
the source manifold M, This is particularly convenient vhen M is & secomdary

source such as occurs in reflection, trancmission &nd diffvection, The

resudis Of section AT oo ; applied here, Ve #irek rowrite (12) in the

o Y.
- v g ww cewe -

14
P
Q

form
(23)

wo,) as(o) g
wia) "o o
4w st v reesf o] 0fe ).
°
If ¥ 15 a (non-chapacteristic) gurfasc 9, then on every outgoing rey
ve my waagure 0 from S an. “<(6) 15 given by (23) with 9, replaced by O.
I M is & point, let 40 be an element of snlid angle of the
starting directions of the reys. Then for 0.0 dc(ce) ~ ooad 0 and

~ 4
TR T O

o) « U2 & w(a), (25)
Yor « homogensous medium, da(g) = ®a0, Rence

VORE N TR %A (26)

[} -]

o) = E; a(a).
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If M is a curve du(o )~ dy stn £ 020, (see {A7.5).) Bence

Py 9 8in B 2
i35 e e

whore
¥(0) .}.{g ow(s). (29)

For a homogeneous medium, daa(o) « o(l + :—1) dmo ein f, Hence

5 ye
w(o) « Lo 2 or B(o) = E(0) -ﬁ—] . (30)
a(1+ ofe)) o1+ o/, )

Here
Bo) » 1B 2 g(o), (1)

wnd P, 1s glven by (A7.17).

If M s o charncteristic surface S, ve set da(o ) ~ aoai‘(o). Hence

HORE(C SO R (%)

V(o) « 3B ov(o). (33)

For & homogeneous medium, da(c) = 4.'{92 + ©) sin 7 40, 40,, and

a(0) = 0, sin 7 a0, d0, Hence

A ~ A 1/2
v(a) « ] - B(0 2 . (3%)
(o) = vio0) o(s+ ofp,) o B{n) = 5(0) [u(1+ 0/92)]

BY
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Here E(0) 13 given by (31).

Ditfraction Ly edges and vertices

As in .oction AlL 1f an electromgnetic wave (3) is incident upon
an adve or vertex }, that mnuifold sets as 9 secondary source producing a

diffrected vave, The phases of incldent and diffracted waves sulisly

e ncl on M, (35)

B (@ an (36)

The airfraction coefficient (d) is & matrix, As in section ALY, (35) implics
the lav of edge diffraction, For a homogeneous medium the field diffiacted
~g
by & vertex or edge is given by (26) or (30), E(0) being given by (36).
For an inhowgeneous medium we shall discuss aiffraction by an edge.

The discussion for n vortex is similay, Ve firet use (29), (8), end (31) to ontain

o) w U aira) o U2 1o 0 4 fe(0) TH0) Wo0), (1)

Then trom (5) ve cbtain

droy o Mu /8 . A
r(0) = 5 f;’; o féﬁ) (o). (38)

Nov on the dlffructed ray vi(a) ts given by (28), (37), ana (36), vhtle PX(0)
1s detormined by the cyctew. of differential equutions (11) and the initial

H
v
b
i
<
b
]
3
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cmdttion (38). Having cetermined wi(a) anc £%{0),E}(0) 1s given vy ;

o :

o) = /28 Hta). (39) §

e(o) 5

- Tae phase of the diffyected Tield is ;

[+4 :

: ud{o) » si(o) + f ndo, (40} :
0 3

o el

and the field associated with the edge ciifrasted ray is given by

3
a4 i

A q ,.
[
H
For an edge of u perfectly conducting thin sureen, the diffixction :
coefylrtent mtrix is given by equation (A12) of [2d]. }
i
Diffraction by a zmooth cbiect in & h neous medi * i
The description of the phase functions s° and s and the reys for §
|
voth the surfuce wave aid the diffrected wave 's identical to that given in ‘
ohapter A. In ordar to describe the amplitude vectars on a surfuce rny, ve 3

first introduce the vectors !.‘1, the unit tangent Lo the rey, D, the autward

wiit ucinel to the surface, ond !)3 =D XD, finos the medliwm {a hemogenscus
the diffrected ray ic o surfuce geodesic, Dﬂ liez along the unit normel to the
ey, and rs 11es along the binormil, At & puint P on the streight diffrected

-

© ———.

Yoy which leaves the surfuce ut Pl we dullue the triad of vectors

® The following dlsoussion is sdapted from section i) or » The amalogoue
theory for ai: inhomogsneous medium hus not yet been dave . ]




W
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by sctiing D (P) - Dv(Pl). We dencte the cowpononis of the electric field

k%2 1n the three directions D, by & .

vector E, ~ e

We nov sssume that [, , 18 zero and that the components P4 o and
83 propagate independently of ecch other end satisfy the equetiuns of
Chapiar A, Then frow (Alb-i3)

-—

¢ av(3,) :
€ (o) ~ Ef,(ﬁl) op { tk[ar + naj} [RT;':_T ﬂ;':_*'c)_l‘la

1
X ; d”(bl)d:ytql) axp { -[? aJv(u)de} 3 v=2,3.  (4)
1

Here £ t(cl) - Et(ﬂl)mv(ql) 1s the component of the inoident tield B! at

Q, in the dircction D, #nd the other quantities are defined in Seotiom A8,

The diftrection cueificients dd" end the decgy exponents &, are different

for the tvo couponente. At P, the difiltucted fleld associated with » diffacted

ray 1e given by (42) an2

2(p) = E3(PID,(P) + E(PID,(P). (43)

For a perfoctly sonditing smooth object the cosfricienta d” and
ay mmuwm«:wc3mtm same as Vhose for & soalar field
sutinfying the condition u « O on tha surfacs and henco ¢an be cHtained from
(A9:13 - 13) by setting t = w. Stadlarly the coefficlents &\, Ml 3, for the
norwmnl cuMPCuent E 2 Are the same a3 thore 1or & soalar field mblefyley Ulw

(PR S

b

D




condition g-s = 0 o2 the surface and hence cun be obtained fron the some
equations by setting z - 0. O course »o mist also cet k(i) = 0 and z(X) = n in

thene equntions since the medium is Lomogenecus.
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